许丽净[1]2001年在《神经模糊分类器和模糊图象处理研究》文中研究表明本论文围绕模糊神经模糊识别及模糊图象处理两方面展开研究。在模糊神经模糊识别方面,研究了基于模糊感知器的神经模糊分类器;在模糊图象处理方面,研究了利用模糊推理方法去噪声的问题。本论文的工作分两部分总结如下: 第一部分研究了通过调整隶属函数的参数来学习的神经模糊分类器NEFCLASS(NEuro Fuzzy CLASSification)。隶属函数应能客观反映模式的不确定性分布情况,NEFCLASS算法中为每个输入特征划分相同数量的模糊变量显然是不合理的。本文从模糊积分的角度对模糊划分问题作进一步讨论,并根据模糊密度的概念,提出一种为输入特征选择合适模糊划分的方法。实验表明该方法可以提高识别正确率。 第二部分研究了利用基于IF-THEN-ELSE模糊推理规则的FIRE(fuzzy inference ruled by else-action)滤波器来去除加性噪声的问题。对于图象滤波系统,如何在降噪的同时保护细节结构是一个难点。针对这一问题,本文作了叁方面的工作: 1.提出一种基于层次化结构的FIRE滤波器。该滤波器可以在利用更多的局部信息处理细节部分的同时降低算法复杂度,提高了滤波器保护细节信息的能力。 2.提出一种适用于纹理图象的FIRE滤波器。该方法通过将对应于不同邻域尺寸下的象素分布模式的模糊规则集成在同一规则基中,将多分辨率图象分析引入到单一模块内。实验表明该方法对纹理图象的去噪效果明显。 3.根据多尺度图象分析方法提出一种检测算法,在滤波之前,首先将图象大致分为均匀区域、轮廓区域及纹理区域。在此基础上,可以对不同区域采用不同规则。实验表明该方法可以在降噪的同时很好地保护细节信息不被破坏。
佚名[2]2010年在《自动化技术、计算机技术》文中提出TP11 2010021966离散网络化群体系统一致性H∞控制/李向舜,方华京(华中科技大学控制科学与工程系)//应用科学学报.―2009,27(5).―525~531.针对网络化群体的一致性问题给出了状态反馈H∞控制器存在的条件。通过状态分解将系统状态进行适当的分解,在此基础上结合线性矩阵不等
宋凯[3]2008年在《基于计算机视觉的农作物病害识别方法的研究》文中研究指明为保证有效合理地施用农药防治农作物病害,农业生产者必须准确的获取作物的生长信息,这样,农业生产者可根据获得的病害信息快速、准确的诊断受害作物的病因以及受害程度,因病治宜。随着计算机处理能力的不断增强,以及图像处理与识别技术的快速发展,数字图像处理与识别技术在农业中的应用越来越广泛,并将成为实现农业信息化与自动化的重要技术力量。农业信息采集工作量巨大,信息的实时性和准确性是农业生产和科学研究领域普遍关注的问题,如何及时快速地进行农作物病害的准确判断一直是计算机技术面向农业领域研究工作的一项重要内容。为此,本文以计算机视觉技术为重要技术手段,综合运用图像处理和植物病理学方面的知识,研究玉米和黄瓜病害的识别和诊断。首先,根据病害叶片的采样要求,利用光照系统和计算机图像处理装置进行病害样本的图像采集。但是无论采用何种装置,采集到的图像往往不能令人满意。针对所采集的图像包含噪声的问题,讨论图像去除噪声的方法。在去除噪声方面论述了常用的几种消噪方法,很多消噪的方法可以很好的去除噪声对图像的影响,但是在消噪的同时也弱化了图像中目标区域的边缘,不利于基于边缘的图像分割算法的使用。因此本文采用Winer滤波来对病害图像进行去除噪声,同时采用多尺度Retinex彩色复原图像增强算法对图像进行增强处理,改善图像质量。经上述处理后,图像质量和显示效果得到明显改善,符合实验要求。其次,深入研究了图像分割的各种方法,仔细研究了病害图像的特点,将聚类分析引入到图像分割中,分析比较了硬C—均值聚类和模糊C—均值聚类分割算法的特性,采用快速模糊C—均值聚类算法,对病害图像进行分割,并通过实验验证了这种算法在聚类优化性能不变的前提下,可以使运算的开销降低,从而使得分割耗时明显地减少。本文根据Kingsbury提出的具有近似位移不变性和良好方向选择性的Q-shift DTCWT变换理论设计了基于统计性特征和系数特征的提取算法。提取了病斑图像的周长、面积和形状参数等特征,然后对所获得的特征值进行标准化,并进行病害图像的分类判断,以获得病害识别的精确性。对训练样本特征提取阶段的结果进行训练SVM分类器,并应用训练好的SVM分类器进行分类识别检测。在病害图像预处理和特征提取阶段采用了不同的方法并在不同的Video中与SVM分类法进行了大量的组合测试。结果表明,本文提出的病害识别算法不仅具有较好的鲁棒性,而且能有效提高识别率和降低误识别率。采用3层完全结合方式的Bp神经网络来建立农作物病害的诊断模型,同时将模拟退火算法和粗粒度并行遗传算法结合起来,既综合了遗传算法和模拟退火算法的优点,又加快了一般模拟退火遗传算法的搜索速度,对所建立的BP神经网络进行优化。优化完成后,网络的诊断能力和运算速度得到增强。采用VC++程序设计软件编写程序,形成了基于计算机视觉的农作物病害识别系统。本文从算法理论研究入手,以计算机图像处理为技术手段,以VC++语言为编程语言,综合运用计算机视觉技术、人工神经网络、小波变换、支持向量机和统计模式识别方法,对作物病害图像的处理和诊断技术进行了研究。
佚名[4]2011年在《自动化技术、计算机技术》文中进行了进一步梳理TP112011011954一般成本环境下分散式多工厂资源调度/陈胜峰,蔚承建(南京工业大学信息科学与工程学院)//信息与控制.―2010,39(5).―640~645.研究多工厂一般成本结构特征,即工厂含有固定成本和单位成本,提出了一种分散式多工厂资源调度方法,该方法使用基于连续双向拍卖市场机制的ZI2策略。ZI2策略是一种包含价格和数量的二维报价策略,agent采用该策略在给定价格范围内随机提交报价。模拟实验结果验证了ZI2策略可以实现较高的调度效率,整体平均效率达到90%。图2表8参10
胡敏[5]2005年在《基于Snake的图象分割与癌细胞识别方法研究》文中认为随着医学图象可视化技术的发展和各种医学成像模式的出现,医学图象自动分析和处理已成为图象工程领域和生物医学工程领域一个重要的研究方向。作为医学图象处理中的一个热点问题,细胞图象的自动分析和识别一直受到人们的普遍重视。由于细胞核浆形态多样,细胞涂片中存在细胞重迭与杂质污染,染色不均匀,涂片细胞图象的高精度分割与恶变性状特征提取成为细胞图象处理和癌细胞定量分析与识别中的难点课题。 本文研究细胞图象分析技术和癌细胞识别方法。针对食管涂片的细胞图象,应用图象分析和模式识别技术研究细胞的分割方法和细胞形态、颜色、纹理特征的提取,以及癌细胞分类识别技术。本文的研究成果主要体现在以下几个方面: 1、提出了一种基于模糊灰度一致性的Snake生长模型。针对传统Snake须将初始轮廓曲线置于真实边界附近的缺点,该模型在能量函数中增加了一项基于像素点与目标灰度一致性模糊度量的生长能量,使得能量优化过程不易受局部极小值的影响,具有较强的抗噪能力。轮廓曲线采用极坐标描述,计算简便。实验结果表明,该模型分割效果良好,分割性能稳定。 2、针对细胞核边界重迭和模糊现象,提出了一种基于信息融合的新的Snake生长模型,并构成了一种彩色细胞核分割方法。该方法充分利用细胞图象的先验信息,对细胞核进行椭圆拟合和边界重迭(污染)信息估计,基于椭圆边界和不同区域的颜色分布特点,建立多个模糊度量函数分别从几何关系和颜色一致性上描述像素点对细胞核的隶属程度,然后融合边界估计信息和各种模糊度量,建立新的Snake生长模型实现细胞核的分割。椭圆信息增强了对重迭或模糊部分的边界跟踪能力,多种信息的融合改善了分割效果。实验结果表明,新方法分割精度进一步提高,分割性能更稳定。 3、提出多种细胞核恶变性状的特征分析方法。针对癌细胞核染色颗粒特征明显的特点,提出一种基于形态学颗粒分析的纹理描述方法(MSGF方法)。该方法构造一种二维粒度分布图对二值图象作颗粒元素分解,以颗粒元素的数量、尺度分布和几何特征参数代替传统SGF纹理分析中的连通区域特征参数,对细胞核染色颗粒特征具有更好的描述能力。此外,本文还采用曲率熵描述细胞核的形状不规则程度,给出了改进的Tamura纹理粗糙度和对比度参数描述细胞核的染色质粗细程度。 4、在应用上述方法对细胞图象进行精确分割和恶变性状分析的基础上,对提取出的一系列细胞核形状、颜色和纹理特征参数,分别应用贝叶斯分类法和k-近邻法进行癌变细胞与非癌变细胞的分类识别实验。实验表明,单细胞的分类正确率达到86%以上,在对少量样本作拒分决策的情况下可以获得更高的分类正确率:与传统的SGF特征和癌细胞识别中使用较多的GLCM特征相比,本文提出的MSGF特征描述细胞核恶变性状更有效,分
参考文献:
[1]. 神经模糊分类器和模糊图象处理研究[D]. 许丽净. 华南理工大学. 2001
[2]. 自动化技术、计算机技术[J]. 佚名. 中国无线电电子学文摘. 2010
[3]. 基于计算机视觉的农作物病害识别方法的研究[D]. 宋凯. 沈阳农业大学. 2008
[4]. 自动化技术、计算机技术[J]. 佚名. 中国无线电电子学文摘. 2011
[5]. 基于Snake的图象分割与癌细胞识别方法研究[D]. 胡敏. 解放军信息工程大学. 2005