微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。作为电子学的分支学科,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展水平直接影响着整个信息技术的发展,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。
一、微电子学的系统组成
微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。
微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。
微电子技术的应用领域大致分为以下几个方面:小型化集成系统,高密度电子组装技术和电子纳米学。以下对这三个方面作简要阐述与分析。
小型化集成系统:微电子学给人类带来了半个世纪的繁荣。目前国际上集成电路生产线已普遍采用8圆片,0.35um工艺。我国集成电路的大生产水平发展也很快上个世纪末就已经达到了6'1.2um的水平,IC产量到2000年可望达到年产10亿块。中科院微电子中心已开发出0.8um的CMOS工艺,在5.0×5.7mm 面积上集成了26000只晶体管、输出管脚数为72,制成了通用的模糊控制集成块。
高密度电子组装技术:集成电路IC实际上完成了芯片级的电子组装,有着极高的互联密度。那么,能不能将高集成鹊胨SI/VLSI/ULSI(大规模/超大规模/特大规模集成电路)和ASIC/FPGA/EPLD(专用IC/现场可编程门阵列/电可擦除可编程的逻辑器件)等组装在一起实现集成电路的功能集成呢?这就是SMT(表面安装技术)、HWSI(混合大圆片规模集成技术)和3D(三维组装技术)。这些技术,推动着电子设备和产品继续向薄轻短小发展,在片状元件的小型化和自动安装设备所能处理的元件尺寸已濒临极限的今天,起着关键的作用。WSI是将复杂的电子电路集成在一个大圆片上。将IC芯片,MCM和WSI进行三维迭装的3D组装突破了二维的限制,使组装密度更上一层楼
纳米电子学:近几十年来,电子计算机已历经了几代的更迭,而代代更迭都是以存储或处理信息的基本电子学单元的尺度变化为标志的。从80年代开始,科学家开始探索特征尺寸为纳米量级的电子学,纳米电子学主要研究以扫描隧道显微镜为工具的单原子或单分子操纵技术。这些技术都有可能在纳米量级进行加工,目前已形成纳米量级的、信息存储器,存储状态已维持一个月以上,希图用此技术去制作16GB的存储器。
期刊文章分类查询,尽在期刊图书馆德国的福克斯博士等制出了原子开关,达到了比现今芯片高100万倍的存储容量,获得了莫里斯奖。量子力学告诉我们,电子与光同时都具有粒子波的特性,今天的微电子学和光电子器件将缩到0.1线宽,电子的波动性质再也不能忽视,把电子视为一种纯粹粒子的半导体理论基础已经动摇。这时电子所表现出来的波动特征和拥有的量子功能就是纳米电子学的任务。
二、微电子技术的应用发展方向
微电子技术对现代人类生活的影响极大,微电子技术新的发展及应用方向是系统芯片(SOC),它的发展时间可能会更长,所谓的系统芯片是随着微电子工艺向纳米级迁移和设计复杂度增加,一种新的产品把系统做在了芯片上,该芯片被称为系统芯片。微电子技术新的发展及应用方向是系统芯片(SOC),它的发展时间可能会更长,所谓的系统芯片是随着微电子工艺向纳米级迁移和设计复杂度增加,一种新的产品把系统做在了芯片上,该芯片被称为系统芯片。
由芯片发展到系统芯片(SOC),是改善芯片集成技术的新举措。微电子器件的特征尺寸难于按摩尔定律无限的缩小下去,在芯片上增加集成器件是集成技术发展的另一方向。与当年从分立晶体管到集成芯片一样,系统芯片将是微电子技术领域中又一场新的革命。
微机电系统制造是微电子发展的另一方向,它的目标是把信息获取、处理和执行一体化地集成在一起,使其成为真正的系统,也可以说是更广泛的SOC概念。MEMS不仅为传统的机械尺寸领域打开了新的大门,也真正实现了机电一体化。因此,它被认为是微电子技术的又一次革命,对21世纪的科学技术、生产方式、人类生活都有深远影响。
微机电系统技术是建立在微米/纳米技术基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。微机电系统的制造,是从专用集成电路技术发展过来的,如同ASIC技术那样,可以用微电子工艺技术的方法批量制造。但比ASIC制造更加复杂,这是由于微机电系统的制造采用了诸如生物或者化学活化剂之类的特殊材料,是一种高水平的微米/纳米技术。微米制造技术包括对微米材料的加工和制造。纳米制造技术和工艺,除了包括微米制造的一些技术(如离子束光刻等)与工艺外,还包括利用材料的本质特性而对材料进行分子和原子量级的加工与排列技术和工艺等。
随着信息时代发展需要,后硅时代的将来还无法预料,但微电子方面的科学工作者普遍期望基于分子结构新方案和工作原理的发展,在基础研究方面,已有分子电子的设想,但还不能估计其技术可转换性。有机微电子技术、超导微电子技术、纳米电子技术等,都将是微电子领域新的亮点。
如今,微电子技术的应用越来越广泛,不仅在日常生活,而且在军工,科学研究等方面也有很深入的应用。然而,我国的微电子产业还处于发展阶段,国内的产品主要依赖进口。作为微电子专业的大学生,我们有责任,也有义务为我国的微电子产业的发展做出应有的贡献,让其成为我国又一大世界先进的产业。
参考文献:
[1]陆剑侠,王效平,苏舟.微电子技术的发展趋势与展望[J].微处理机.2014(01)
[2]于明.微电子技术的应用及发展趋势[J].中国高新科技.2017(11)
[3]杜浚平.微电子技术的发展趋势与展望[J].计算机产品与流通.2017(07)
论文作者:张肇昕
论文发表刊物:《中国西部科技》2019年第3期
论文发表时间:2019/4/4
标签:系统论文; 芯片论文; 微电子论文; 微电子学论文; 微电子技术论文; 技术论文; 电子学论文; 《中国西部科技》2019年第3期论文;