摘要:智能化技术是刚刚兴起的一个高新技术领域,它就是计算机技术与人工智能理论的相互融合。虽然智能化技术发展时间不长,但已经受到了相当普遍的关注和广泛的应用。本文概述了智能化技术应用理论基础,分析了智能化技术的特点和优势,并阐述了智能化技术在电气工程自动化控制的具体应用。
关键词:智能化技术;电气工程;自动化控制;应用
一、智能化技术的含义
智能化技术是人工智能理论与计算机技术全面融合后的重要产物,它是21世纪才兴起的一项高新技术。从兴起到发展,智能化技术在短短的几年时间里,已经被广泛地关注和应用,由此可见,智能化技术的前景将是非常乐观的。
智能化技术被称作人工智能(AI),也可其为机器智能,该技术是自然与社会科学的综合体。AI隶属于计算机技术,它重点研究:将人们的收集信息、识别图文、自动做出反应、分析判断等这些能力,通过运用计算机的编程设计,来加以实现,让计算机来解决各种复杂的问题。目前,AI的研究领域主要涉及到语言和图像识别、自然语言的处理、专家系统和机器人等方面。在电气自动化中应用最为广泛的是专家系统。
智能化技术应用于电气工程的具体内容包括了:信息搜集、信息处理、电气自动化控制、系统运行等。其在电气工程自动化控制中的应用,能增强控制效果,改进、弥补自动化控制中的缺陷和差错,提高设备运行、设备处理的精确度和准确性,进而提升系统的工作效率,促进行业发展。
二、智能化技术应用优势
在电气自动化控制中应用到智能化技术,主要是以智能化控制器的形式,这种智能化控制器较过去的控制器相比的确具有不少优势,下面我们就对其进行详细的分析。
1、无需控制模型
过去的控制器在进行自动化控制时,往往会因为控制对象的动态方程比较复杂而无法精确到位地掌握,这会使得该对象模型的设计过程中会出现较多不可预估、不可测量的客观因素,比如一些参数的变化。无法掌握这些因素,也就不能设计出精准的模型,自动化控制工作的实际效率也会下降。而智能化控制器并不需要对控制对象模型进行设计,这就可以从根本上避免一些不确定因素的产生,提高自动化控制的精密系数。
2、方便调整控制
智能化控制器还有另一个大好处,就是可以随时根据下降时间、响应时间以及鲁棒性的变化来调节控制程度,从而有效提高自身工作性能,为自动化控制提供最基础的保障。无论是在什么样的情况下,智能化控制器的调节控制与过去的控制器相比具有更方便调节的优势,更适合投入实际使用。还有一点好处,就是智能化控制器在进行调节控制时完全只需要根据相关数据的变化来自行调节,即使没有专门的技术人员在旁边也可以,同样远程调节控制也是可行的,充分体现了电气工程自动化控制的无人操作性要求,对行业未来发展的重要性不言而喻。
3、一致性很强
智能化控制器的一致性很强,这表现在它对不同数据的处理上,及时输入完全陌生的数据也可以收到很高的估计,完美达到自动化控制的相关要求。不同的控制对象的效果也是不同的,虽然在对有些控制对象实施控制时智能化控制器暂时没有采取行动,其控制效果也是非常优秀的,但这并不是绝对的,可能在换了控制对象的时候就无法收到预期的效果了。
期刊文章分类查询,尽在期刊图书馆所以我们技术人员在设计阶段还是不能松懈,要认真落实具体化原则,即在面对不同的对象时一定要根据其具体情况详细分析,不能因为马虎就降低了控制要求。一旦出现智能化控制器使用效果不佳的情况,不能盲目否定智能化技术,一定要从每个工程环节详细排查、认真分析,因为上述人为因素会给自动化控制结果带来很大的误差,影响试验的准确性。
三、智能化技术在电气工程自动化控制中的应用展望
1.智能化技术在电气工程设计中的应用
电气设备的设计是一个复杂过程,涉及到电气自动化专业中电路、电机、变压器、电力电子技术、电磁场等多门学科内容;对设计者的实际工作经验要求很高,需要大量的人力、物力和财力。而借助于人工智能技术,可以解决很多人脑难以快速解决的繁琐计算和模拟过程,大大地提高了设计中的工作效率和精度。电气设备设计中应该注意不同的算法使用与不同的实际情况,专家系统通常用于开发性设计,而遗传算法常常被用于优化设计。要进行高效率、高质量的设计工作,要求工作人员具有高水平的人工智能软件应用能力和丰富的工作经验。
2.智能化技术在电气工程控制中的应用
电气自动化控制是实现增强生产、流通、交换和分配的关键环节,提高控制自动化,就能够减少人力、财力投入,提高系统的运作效率和质量。人工智能技术在电气设备控制中的应用主要包括模糊控制、专家系统控制和神经网络控制。在实际应用中,用得最多的是模糊控制,因为模糊控制最简单,且与实际联系最为紧密。下面以人工智能控制在电气传动控制中的应用为例进行介绍。
模糊控制在电气传动控制中的应用主要分为在直流传动和交流传动中的应用。直流传动控制中模糊逻辑控制主要应用于模糊控制器中,包括Mamdani和Sugeno。Mamdani用于调速控制,其规则库是一个if-then模糊规则集;而Sugeno控制器实际上是Mamdani控制器的特例,其典型的规则是:如果x隶属于A,且y隶属于B,则Z=f(x,y)。这里,A和B是两个模糊集在交流传动控制中模糊控制器主要用于取代常规的PI或者PID控制器,另外最新研究中,还将模糊神经控制器用于各种全数字的高动态性能传动系统中,得到了一些新的研究成果。
3.智能化技术在电力系统中的应用
人工智能技术在电力系统中的应用主要包括专家系统、神经网络、模糊集理论和启发式搜索这4个方面。专家系统ES是一个集大量规则、经验和专业知识于一身的复杂程序系统,该系统主要是依靠某个特定领域的专家的经验和知识,进行推理判断,并模拟专家的决策过程,对各种需要专家进行决策的难题进行处理。专家系统由6个部分组成,即知识库、数据库、推理机、咨询解释、知识获取和人机接口。专家系统常用规则是“If-Then规则”,即在满足If条件后执行Then之后的操作。在专家系统的使用中,需要根据新的具体情况对专家系统的知识库和规则库进行更新,以适应发展需求。
模糊理论在电力系统的潮流计算、系统规划和模糊控制等方面的应用得到了飞速发展,因为模糊逻辑能够完成高难度的数学近似计算,对负荷变化和电力生产等不确定因素建立隶属函数,以构建电力系统的最优化潮流模型。
4.智能化技术在电气故障诊断中的应用
人工智能技术中的模糊理论、专家系统和神经网络在电气设备故障诊断中应用较广泛,特别是在变压器故障诊断、发电机和电动机故障诊断中。目前变压器故障诊断常用方法是取变压器油分解出气体,对气体进行分析来判断故障状态。传统的故障诊断方法无法针对设备故障的不确定性、非线性和复杂性等特点进行诊断,诊断效率较低。而人工智能方法的应用提高了诊断准确率。人工智能技术主要使用模糊逻辑、神经网络和专家系统三种故障诊断方法。如在电动机和发动机的故障诊断中使用人工智能化的故障诊断技术,结合了神经网络和模糊理论,实现了故障诊断知识模糊性与较强的神经网络共同的诊断,相对提高了故障的针对准确率。
总结
智能化理论是对人的智能进行开发、延伸和模拟的理论。将智能化技术应用于电气自动化控制中,可提高故障诊断的准确率和效率,促进电气产品的优化设计,实现智能化控制,从而提升电气系统效率。由此看来,只有加快电气工程智能化进程,才能促进电力行业的稳定、持续发展。
参考文献:
[1]华树超,孙娜.基于电气工程自动化的智能化技术应用分析[J].科技创新与应用,2012,(26).
[2]莫家宁.智能化技术在电气工程自动化控制中的应用探讨[J].机电信息,2013
[3]耿英会.智能化技术在电气工程自动化控制中的应用[J].科技创新导报,2012
论文作者:陈磊 张炜
论文发表刊物:《防护工程》2018年第28期
论文发表时间:2018/12/21
标签:技术论文; 专家系统论文; 控制器论文; 自动化控制论文; 模糊论文; 人工智能论文; 电气工程论文; 《防护工程》2018年第28期论文;