关键词:隧道掘进;复合地层;土压平衡;
引言
随着我国城市轨道交通建设事业的蓬勃发展,地铁线路的规划不可避免地需要穿越不良地质区域。如广州、深圳、厦门等城市的花岗岩地层中就不同程度地分布着花岗岩球状风化体,俗称“孤石”。孤石强度很高,与周边风化土体性质差异大,造成相邻地层突变、软硬不均,对盾构施工提出了严峻的挑战。全面掌握孤石的分布情况,研究孤石处理方法,确保盾构顺利穿越孤石段地层,是隧道盾构工程成败的关键。
1 工程设计概况
1.1 工程地质
隧道所处地层自上而下分为五层:杂填土、黏土、粉质黏土、风化围岩和基岩。杂填土由砾石、砂石、粉土、黏土和人造材料的混合物组成,松散状态,平均标贯值N为6;黏土层的平均含水量为30%,液限34%,塑限13.5%,根据USC土壤分类系统划分为CL,中硬状态,平均不排水剪切强度为60kPa;粉质黏土层的平均含水量为31.4%,液限33%,塑限12.7%,根据USC土壤分类系统划分为CL,其强度比黏土层低,平均不排水剪切强度为30kPa;风化围岩基本处于残余土状态,由砾石、沙石、粉土和黏土混合物组成,中密状态,平均标贯值N为18;基岩为轻度至中度风化的凝灰岩,岩石完整性(RQD)在70%~90%之间,平均值为78%,岩芯的单轴抗压强度在45~121MPa之间,平均值为82.5MPa。具体土层参数如表1所列。由于隧道下方基岩面起伏变化大,隧道在何山路站附近需经过不连续软土段、复合地层段和硬岩地层段,图2至图4显示了隧道复合地层段分布情况与其所在区域的地质剖面图。地下水由潜水、微承压水及裂隙水组成,水位在地面以下2m以内。
1.2 隧道选址
由于在软土、复合地层和硬岩中土压平衡盾构的运行模式不同,因此在隧道掘进前需准确了解隧道所处地质条件。从何山路站向南出发的200环(240m)内地质条件差异很大,特别是基岩面变化很不规则。在初步设计阶段,始发240m的范围内共钻26个孔以确定地质情况,钻孔深度至隧道设计边界下方约10m处,土样被送到实验室进行室内力学参数测试。在最终设计阶段进行了第一次补堪钻孔,补勘点位布置在隧道范围内,水平间距5m,垂直间距2m,在何山路站始发的240m范围内共钻59孔,密集的勘探点对地质条件进行了详细补充。施工前,在详勘孔位间布置第二次补堪钻孔,由何山路站始发的240m范围内共钻10孔。
期刊文章分类查询,尽在期刊图书馆
2 复合地层土压平衡盾构施工技术
2.1 钻孔探测孤石技术
1)探测区域根据孤石在花岗岩残积土中的基本发育特点以及越靠近山丘越密集的特点,调查工程所在地原始地理地貌,一般为山丘附近的地段,将之作为钻探的重点区域来考虑,隧道洞身所处<5H>花岗岩残积土、<6H>全风化花岗岩地层区域也将作为重点探测区域;此外,详勘中已揭露孤石在隧道洞身范围内的钻孔附近隧道线路出现孤石的几率也很大,将之作为补充钻探的重点区域来考虑。从成本、工期方面考虑,钻探孔的布置采用逐级加密的方法,在实施过程中根据现场实际情况实行动态管理,对钻探孔的布置和数量进行适当调整,以提高孤石探测的准确性。2)钻探孔布置方式重点探测区域:钻孔沿隧道线型按三排错孔布置,一排布置在隧道中心线上,另两排分别距隧道边线1.5m布设。采用三级加密的布孔方式,孔距按10m→5m→2.5m的方式加密。第一级布孔间距为10m;根据第一级钻孔的实际情况判断,如孔间出现孤石的机率很大,则在第一级布孔的基础上每两孔间增加一个钻探孔,使临近两孔的孔距不超过5m;根据第一、第二级钻孔的实际情况判断,如孔间出现孤石的机率仍然很大,则将孔距增密到2.5m/个;在第二或第三级加密钻孔前,如判断孔间出现孤石的机率不大或盾构机足以应付风险,则终止加密钻孔。
2.2 泡沫剂选用
经过对出渣口结构的调整,减少了出渣口堵塞现象.但是,使用的泡沫剂消耗偏大,土体改良效果一般,渣土流动性能受到限制.究其原因:泡沫剂的改良效果是相对所处理的土层条件而言的,不同的地质条件下,选择合理适用的泡沫剂产品,才能做到既保证顺利施工,又节约成本的效果.泡沫剂的选择要从两个方面进行考虑,一是泡沫剂材料自身的性质,二是泡沫剂与开挖后土层混合所形成的泡沫混合土力学性质.目前应用于土压平衡式盾构施工中的泡沫剂的发泡率在5~20之间,在同样条件下,发泡率越高,等量的泡沫剂产生的泡沫就越多,说明其具有高效性.但是发泡率与生成泡沫的稳定性是相互影响的,较高的发泡率是牺牲泡沫稳定性为代价的,仅仅发泡率高并不能说明泡沫剂的优越,两者需要进行综合考虑.泡沫剂作用的土体处于运动状态,泡沫改良土体的作用仅要求从开挖面到螺旋输送机口顺利排出这段运动过程中,所以泡沫的稳定性将直接关系到土体改良效果的持续时间.泡沫的发泡率作为一项可变参数,可以根据具体施工情况进行选择。
2.3 土体加固
为保证开挖时的掌子面稳定,控制隧道开挖引起的土体变形,保护隧道穿过处地表的既有建筑物,在复合地层区域盾构开挖之前对隧道上部土体进行静压注浆,在隧道与相邻建筑物之间安装隔离桩。本标段中复合地层段上部“软土”由不同高度的粉质黏土和风化围岩组成。粉质黏土的不排水剪切强度相对较低,为30kPa,风化围岩实际上是中等密度状态的残留土,渗透系数为1×10-3cm/s。为了增加粉质黏土的强度并降低风化围岩的渗透性,对隧道上部3m范围内土体进行静压注浆。
结语
(1)复合地层隧道掘进存在极大的风险,隧道选线应尽量避免或缩短复合地层长度。某轨道交通3号线何—苏区间通过调整线路纵坡和车站埋深,将复合地层长度缩短了近70m,极大地降低了工程的整体风险。(2)某轨道交通3号线何—苏区间对隧道上部软弱土体进行的注浆加固、周边敏感建筑物设隔离桩等工程措施是保证隧道在复合地层段掘进掌子面稳定的重要措施。土体经注浆加固后增加了掌子面稳定性,减少了隧道开挖引起的地表沉降,使用双液浆注浆加固使凝浆范围得到控制。设置隔离桩可有效地减少隧道施工的影响,保护邻近建筑物。
参考文献
[1]谭忠盛. 洪开荣. 万姜林. 等.软硬不均地层复合盾构的研究及掘进技术[J].岩石力学与工程学报,2006,25(S2):3945-3952.
[2]李惠平. 夏明耀. 盾构姿态自动控制技术的应用与发展[J].地下空间与工程学报,2003,23(1):75-78.
论文作者:王亚飞
论文发表刊物:《防护工程》2019年第1期
论文发表时间:2019/5/23
标签:地层论文; 隧道论文; 盾构论文; 泡沫论文; 黏土论文; 钻孔论文; 建筑物论文; 《防护工程》2019年第1期论文;