改进人工免疫算法的多机协同空战目标分配方法论文

改进人工免疫算法的多机协同空战目标分配方法

高阳阳1, 陈双艳2, 余敏建2, 海静3, 房瑞跃4

1.中国人民解放军93175 部队,吉林长春130000; 2.空军工程大学空管领航学院,陕西西安710051;3.中国人民解放军94754 部队,浙江嘉兴314000; 4.中国人民解放军95026 部队,广东佛山528000

摘 要: 针对多机协同空战目标分配问题,在我方综合优势函数建模的基础上,提出了一种改进人工免疫算法。首先采用随机生成法和人工构造法创建2个初始种群,保证了初始种群的多样性;然后采用2种不同的选择、交叉、变异操作进行进化;接着采用设计的新移民算子进行种群间信息交换,进一步增加种群多样性,提高搜索效率。最后设计实验将改进人工免疫算法与3种类型的人工免疫算法进行了对比。仿真结果表明:改进人工免疫算法能够有效改善早熟收敛问题,提高搜索效率,获得最优分配方案,适用于多机协同空战目标分配问题,满足实际作战需求。

关 键 词: 多机协同;目标分配;改进人工免疫算法;移民算子;分配方案

近年来,随着高新技术的快速发展,战斗机协同空战已成为现代空战的主要作战样式。在多机协同空战中,如何根据战场态势,合理分配目标,充分发挥多机协同空战的整体作战效能,是多机协同空战指挥决策中最为关键的问题之一。目前,用于求解目标分配问题的方法有粒子群算法[1]、遗传算法[2]、蚁群算法[3]、萤火虫算法[4]及其混合优化算法[5]等。但这些算法收敛速度很慢,有时得不到稳定的解,严重影响指挥员进行空战决策。

人工免疫算法从提出至今已被广泛应用于各领域,如模式识别[6]、网络安全[7]、图像处理[8]等。文献[9]在采用自适应锦标赛选择算子的基础上,引入“(1+λ )-选择”全局更新技术对人工免疫算法进行改进,解决了武器-目标分配问题;文献[10]提出了一种新的编码方案和亲合度算法对免疫算法进行改进,解决了编队防空火力分配问题;文献[11]为防止人工免疫算法提前陷入局部最优,对抗体群进行改造,解决了火力分配问题。随着免疫算法越来越受到学者的关注,出现了一些与并行免疫算法有关的研究成果。文献[12]为求解大规模TSP问题,提出了一种基于TMSM的并行免疫记忆克隆选择算法;文献[13]为克服克隆选择算法收敛速度慢的缺陷,采用定向突变的自适应并行搜索策略对传统免疫算法进行了改进;文献[14]为克服传统遗传算法在求解路径规划问题时,不能以概率1进行收敛的缺陷,提出了一种基于抗体-抗原亲合度、抗体-抗体亲合力自适应动态调整的伪并行免疫算法。但以上算法存在如下问题:缺少种群间信息的交换,搜索效率低,容易出现早熟收敛现象。

基于此,本文在研究了传统和改进人工免疫算法的基础上,设计了一种并行人工免疫算法以提高算法搜索效率,并采用新的移民算子实现2个种群间的信息交换,从而保证种群的多样性。最后利用改进人工免疫算法求解多机协同空战问题,得到了最优分配方案。

对于上述前四本教材可釆取两个方案实施:一是由教育部相关学科的专业教育指导委员会,遵循游学教育内核,开展多模态课程群建设,根据双语教材编写原则,组织专业人员进行编写。二是由出版社以项目制、市场化规范操作,但须经由相关专业教育指导委员会审定。地方特色课程出版物及游学指南,可由各省、市根据涉及的内容,有针对性地开展不同方案的教材规划与编撰。

1 多机协同空战目标分配数学模型

多机协同空战目标分配是指挥决策过程中一个十分重要的环节。本文以多机协同空战为背景,采用简明实用的非参量法对多机协同空战目标分配问题进行数学建模。传统的综合优势函数主要是根据角度优势、距离优势和能量优势进行构造,但随着战机性能在空战中发挥的作用越来越明显,传统的综合优势函数已经不适用于现代空战中的多机协同目标分配问题。因此本文以传统模型为基础,考虑战机性能优势,建立如下空战优势评价指标体系:

图1 空战优势评价指标体系

1.1 角度优势

(1)

式中,ψ a 为目标方位角,ψ t 为目标进入角。其中:ψ a ∈[0,180];ψ t ∈[0,180]。

1.2 距离优势

(2)

普拉提训练法是由德国约瑟夫·普拉提于1926年创立并推广的一种静力性健身运动[9]。最初应用于专业舞蹈团体肌肉训练和医疗康复机构病人痊愈后的机体功能及肌肉力量恢复[10]。随着现代社会健康研究不断深入,普拉提训练适用领域得以扩展,并逐渐应用于孕妇产前训练[11-12]。

1.3 能量优势

(3)

式中,E g 为战机单位质量的能量,h 为战机高度,v 为战机速度,g 为重力加速度。根据(3)式建立能量优势函数如下所示

(4)

式中,E gi 为我方第i 架战机单位质量的能量,E gj 为敌方第j架战机单位质量的能量。

1.4 战机性能优势

H =h /max(h )

(5)

变异后

式中,r ij 为我方第i 架战机与敌方第j 架战机之间的距离,r imissle 和r iradar 分别为我方第i 架战机的导弹射程和雷达最大探测距离。

h =

[lnB +ln∑A 1+1+ln∑A 2+1]ε 1ε 2ε 3ε 4,

B 为机动参数,A 1为火力参数,A 2为探测能力参数,ε 1为操纵效能参数,ε 2为生存力参数,ε 3为航程系数,ε 4为电子对抗能力系数。根据(5)式建立战机性能优势函数如下所示

(6)

式中,H i 为我方第i 架战机的空战指数,H j 为敌方第j 架战机的空战指数。

1.5 综合优势函数

S =k 1S 1+k 2S 2+k 3S 3+k 4S 4

(7)

式中,k 1,k 2,k 3,k 4为指标权重。传统权重值的确定,常常是由人为给出,有很大的主观性和盲目性。为了更加合理地处理客观信息,本文采用文献[15]中改进的熵权法确定指标权重。

1.6 综合优势函数矩阵

假设在一次空战中,我方战机n 架,敌方战机m 架。根据(7)式可得我方第i 架战机对敌方第j 架战机的综合优势值S ij 。从而可以建立起综合优势函数矩阵S

S ={S ij },i =1,2,3…,n ;j =1,2,3…,m

(8)

交叉算子1

(9)

式中,x ij 表示我方第i 架战机是否分配给敌方第j 架战机,x ij =1表示是,x ij =0表示否。

约束条件:

我方一架战机只能攻击敌方一架战机。

敌方每架战机至少被我方一架战机攻击。

敌方每架战机最多被我方w j 架战机攻击,w j 由双方战机武器性能决定。

我方战机都分配给敌方战机。

2 改进的人工免疫算法

2.1 初始种群的产生

传统的人工免疫算法采用单种群方式进行进化,容易产生早熟收敛现象。有些并行人工免疫算法采用多种群并行进化的方式,但是多采用比较单一的随机方式产生初始种群,通过移民算子进行多种群间的个体交换后,很难打破各种群内部的平衡,其保持种群多样性的效果不是十分明显。

本文设计的并行人工免疫算法采用2种不同的方式产生初始种群,分别为随机和人工方式。随机方式是在满足4个约束条件的前提下,随机产生的初始解,具有较强的随机性。人工方式是由人为确定的满足约束条件的初始解,具有较强的主观性。分别采用随机和人工方式产生的2个初始种群,使2个种群在产生之处就具有不同的特征,通过移民算子进行种群间个体交换后,能够打破2种群内部的平衡,增强种群多样性,使种群向着更高级别进行进化,从而得到全局最优解。

2.2 亲合度函数和编码方式的选择

人工免疫算法是模仿生物信息系统中的抗原识别、记忆等功能而提出的一种智能计算方法。多机协同空战目标分配问题与人工免疫系统(AIS)有很多相似之处,如表1所示。

表1 AIS与多机协同空战目标分配问题比较

4) 设置独立进化代数m ,按照上图独立运行方式继续进行进化操作。

(10)

本文采用传统的整数编码方式,以我方战机数量为编码长度,即基因长度为n 。抗体位上记录的编号为敌方战机代号,抗体位序号为我方战机代号。具体编码过程如图2所示。

SIM卡槽电路如图5所示,SIM卡槽各引脚与芯片引脚相连接,在模块开机后从SIM-RST引脚和SIM-CLK引脚发送芯片自动产生的时钟和复位信号,同时SIM-VDD引脚输出电压对SIM卡供电,当供电、时钟、复位信号响应后,芯片数据接口与卡槽I/O口建立通信[10]。

图2 抗体编码过程

2.3 交叉、变异算子

为了保持种群的多样性,防止过早收敛,通常要进行交叉、变异操作。通过选择算子保留下来的抗体按照一定的概率进行配对交叉,然后根据变异概率进行变异操作,从而得到新的抗体。

本文分别采用2种交叉、变异算子,具体变换如下所示:

多机协同空战目标分配目标函数定义为

又比如朝鲜,早期也是使用中国钱币。朝鲜是在高丽时代的成宗十五年(995)开始铸钱。最早铸“乾元重宝”,背“东国”,钱文和唐乾元重宝同文,制作也仿唐,只是钱背加铸“东国”两字,以示区别。高丽肃宗年间又铸东国、海东、三韩这几种钱,有通宝、元宝、重宝;有直读、旋读,钱文有篆、隶、楷书等,无不显示出他们接受宋钱文化的影响甚深。至高丽世宗年间,又铸朝鲜通宝钱,及以后的常平通宝钱等③温法仁:《海上丝绸之路货币对商贸作用的研究》,《区域金融研究》2016年第11期。。

交叉前

交叉后

交叉算子2

变异算子2

交叉后

除了对病毒分离培养与鉴定方法之外,还可以采用免疫电镜法,这种检测方法拥有简便、直观、快速、准确的优点,但是由于检测过程中需要使用价格昂贵的电镜设备,所以诊断费用比较高。此种方法不适合进行大规模的诊断。免疫电镜法就是可以通过电镜能够清晰的观察到病毒结构、形态以及立体结构等特征,然后可以对疾病作出判断。将患病仔猪的小肠或者病毒细胞培养物用固定液进行固定,然后用机器切成超薄的切片,在电镜下进行观察病毒的结构、形态。这种方法能够有效区别猪流行性腹泻病毒和猪传染性胃肠炎病毒,因为免疫电镜法不仅可以用已知的猪流行性腹泻病毒高免血清检测未知抗体,而且还能够借助已知的猪流行性腹泻病毒抗原检测未知抗体[3]。

变异算子1

变异前

利用村庄附近自然出漏的山泉水,进行小范围的开挖,开挖以不破坏泉水的自然出流为前提,开挖深度一般较浅,并砌筑集水前池,集水前池多采用浆砌石或混凝土结构,容积依泉水出水量而定,集水前池对泉水进行汇聚,可弥补泉水出水量的不足,同时提升自流引水时水头压力或者为提水泵站储蓄充足的可利用水量。

式中

交叉前

所谓“合踏”是指古人在观察鸡交配繁殖时,发现只须由公鸡踏在母鸡背上,“感而不交”便能致孕。这类见解也见于明代王逵的《蠡海集》中:

变异前

变异后

2.4 移民算子

移民算子的作用是为了实现2个种群间信息的交流,使种群向着更高级别进化,保持种群的多样性。本文在传统移民算子的基础上提出了一种新的移民算子。算法步骤如下所示:①确定2个初始种群,计算2个种群内每个个体亲合度。②将2个种群内的个体按照亲合度大小进行排序。③将2个种群内排序好的个体按照亲合度大小平均分成大、中、小3段。④设定种群间个体交换规模,本文取15%。⑤按照优者多选,劣者少选的原则,将2个种群内的每段按15%×(1,0.9,0.1),15%×(1,0.7,0.3),15%×(1,0.8,0.6)比例选择。⑥将选出的个体进行种群间交换重新产生2个新种群。

以比例(1,0.7,0.3)为例,将上述思想用图形表示。

图3 种群间个体交换示意图

2.5 并行人工免疫算法设计

传统人工免疫算法多采用单种群进化方式,缺少种群间信息之间的交流,搜索效率低,难以保持种群多样性,容易陷入局部最优。基于此,本文设计了一种并行人工免疫算法,具体操作流程和算法流程图如图4所示。

具体操作流程如下。

1) 分别采用随机和人工2种方式产生初始种群A、B。采用整数编码方式对种群中的个体进行编码,以(10)式作为亲合度函数。

六是财政支持低保政策实施的手段单一。财政部门对低保对象的支持局限于低保补贴,对低保对象从事创业与就业的支持政策不明确,如低保户创业和就业的启动资金支持或贷款贴息支持政策不明确,缺乏激励。

2) 设置独立运行代数n ,种群A、B分别采用不同的选择策略、交叉操作、变异操作进行进化。

帕里认为,程式是相同格律条件下,为表述特定意义而常用的一组词语[7]。换句话说,在民歌中,程式是一种具有固定韵律结构的语言模式,是一种出现频率很高的语言文体现象。程式是民歌歌手在即兴创作时所依赖的文体表达思想,具有相对的稳定性。因此,程式是民歌的突出本质。西北民歌“花儿”也不例外,无论是在唱词还是曲调上都具有高度的前景化、程式化特点。这些程式化特质具体而言,就是“花儿”中习以为常的思维方式与叙事方式,约定俗称的语言习惯与表演习惯。笔者认为,“花儿”的程式可大致可分为:曲令程式、格律程式、语言程式、修辞程式、谋篇程式及表演程式。

3) 当种群A、B进化到指定代数时,采用新的移民算子进行两种群间个体交换。

由表1和2.1节可知,人工免疫算法的抗原为公式(9),抗体为满足公式(9)和约束条件1)~4)的解。抗体-抗原亲合度直接采用归一化后的目标函数进行评价

5) 判断是够满足终止条件。如果满足条件则输出结果,否则返回步骤3)。

6) 2条子线计算结束后,选择亲合度函数值大的结果作为问题的最优解。

选取我院自2015年8月至2017年8月收治的80例宫外孕患者作为研究对象,均经腹部超声确诊,按照平行对照法将其分为观察组与参考组各为40例。观察组:年龄23-40岁,平均年龄(36.25±2.52);孕次1-4次,平均孕次(1.76±0.55)次;其中“习惯性”宫外孕15例。参考组:年龄22-40岁,平均年龄(36.19±2.40)岁;孕次1-4次,平均孕次(1.80±0.56)次,其中“习惯性”宫外孕15例。研究经医院伦理委员会审核通过,两组孕妇组间基线资料比较无统计学意义(P>0.05),具有可比性。

图4 并行人工免疫算法流程图

3 仿真分析

3.1 算例仿真

在某次空战中我方战机7架与敌方5架遭遇。其中我方1架战机只能攻击敌方1架战机,敌方战机2,3,5可同时被我方2架战机攻击。g 取9.8,k 1=0.239 730,k 2=0.304 524,k 3=0.186 341,k 4=0.269 405。根据战场某一时刻敌我双方的态势信息,由公式(1)~(7)求得我方战机对地方战机的综合优势值,如表2所示。

表2 我方对敌方战机综合优势表

2个初始种群大小取50,独立运行代数分别设定为10代、40代,选择、交叉、变异操作采用图4中方法,交叉概率取0.7,变异概率取0.05。针对3种迁徙比例A (15%,13.5%,1.5%),B (15%,12%,9%),C (15%,10.5%,4.5%)按照本文提出的改进人工免疫算法进行仿真。3种迁徙比例对应的最优亲合度演变过程如图5所示,最优目标分配方案如表3所示。

考虑边界条件:在锚固段起始端P(z)|z=0=P,锚固段尾端P(z)|z=Lb=0,结合式(2)可得张拉载荷为P时,锚杆锚固段任何位置的轴力大小P(z)为

图5 3种迁徙比例最优亲合度演变

从图5可以看出,改进的免疫算法采用迁徙比例(15%,12%,9%)时,在最优值求解上要优于另外2种比例。

监测计划设计是明确监测目的,并在调查研究的基础上确定监测项目,布设监测网(点),合理安排采样频率和采样时间,选择采样方法和分析测定技术,提出监测报告要求,制定质量控制和保证措施及实施计划等。对监测计划设计的审核是审核工作的前提,目的是要把误差消灭在源头,使质量保证工作与监测工作同步进行。

表3 最优目标分配方案

表3为采用迁徙比例为(15%,12%,9%)时,得出的最优分配方案。分配方案为我方战机5攻击敌方战机1;我方战机6攻击敌方战机2;我方战机1、4同时攻击敌方战机3;我方战机2攻击敌方战机4;我方战机3,7同时攻击敌方战机5。目标分配后,多机协同整体作战效能为2.826 7。

3.2 改进人工免疫算法性能分析

为了进一步分析本文所提算法性能,现将本文算法与传统人工免疫算法、文献[11]中的改进人工免疫算法和文献[14]中的并行免疫算法进行比较,本文所提算法分别采用迁徙比例A ,B 和C 分别对文献[11]中的算例进行30次仿真。4种算法最优值求解和消耗时间统计结果如表4~表7所示。

甘肃省金昌市是全国最大的镍钴生产基地、铂族贵金属提炼中心和全国资源综合利用三大基地之一,素有“中国镍都”的美誉。半个多世纪以来,为祖国镍钴工业从无到有、从小到大、从弱到强,为国家建设和国民经济发展做出了历史性贡献。然而,近年来这个因矿而设的西部城市,和许多资源型城市一样,遇到了前所未有的发展难题,经济发展不可避免地要受到资源不可再生的约束,加快发展接续产业,是金昌实现可持续发展的必然选择。特别是在资源约束日益加剧的情况下,能否尽快构筑起新的接续产业,是金昌面临的重大课题。

表4 本文算法最优值和消耗时间统计结果

表5 传统算法最优值和消耗时间统计结果

表6 文献[11]算法最优值和消耗时间统计结果

表7 文献[14]算法最优值和消耗时间统计结果

从表4可以看出,采用本文算法对文献[11]中的算例进行仿真,在采用迁徙比例B时,效果最好,采用迁徙比例C时,效果其次,采用迁徙比例A时,效果最差。将表4分别与表5、表6和表7进行对比可得:本文算法在采用迁徙比例B 时,与其他3种算法相比具有比较明显的优势;本文算法在采用迁徙比例C 时,较传统算法和文献[11]中算法有比较明显的优势,较文献[14]中算法,优势很小;本文算法在采用迁徙比例A 时,与传统算法相比较,有明显的优势,与文献[11]中的算法相比较,优势很小,与文献[14]中的算法相比较,具有一定的劣势。进一步说明了本文中改进人工免疫算法的性能受迁徙比例的影响,在采用迁徙比例(15%,12%,9%)时,算法效果最优。采用并行运行方式并增加迁徙操作,能够实现2个不同种群间信息的交流,增强种群多样性,从而有效地改善最优策略的求解精度,提高算法收敛速度。

4 结 论

本文在分析了多机协同空战目标分配问题特点的基础上,提出了改进人工免疫算法的多机协同空战目标分配方法。建立了多机协同空战目标分配数学模型,设计了一种并行人工免疫算法,给出了改进人工免疫算法的具体流程,并针对3种迁徙比例进行了仿真分析,验证了改进人工免疫算法在采用迁徙比例B 时,能够取得更优的结果。将改进人工免疫算法与3种人工免疫算法进行了比较,在大多数情况下,改进人工免疫算法与其他3种人工免疫算法相比,能够在更短的时间内求得更优的结果。

参考文献:

[1] 王强, 丁全心, 张安, 等. 多机协同对地攻击目标分配算法[J]. 系统工程与电子技术, 2012, 7(34): 1400-1405

ZHANG Qiang, DING Quanxin, ZHANG An, et al. Target Allocation Algorithm for Multi-Cooperative Air-to-Ground Attack[J]. Systems Engineering and Electronics, 2012, 7(34): 1400-1405 (in Chinese)

[2] 王庆贺, 万刚, 柴峥, 等. 基于改进遗传算法的多机协同多目标分配方法[J]. 计算机应用研究, 2018, 35(9): 2597-2601

WANG Qinghe, WAN Gang, CHAI Zheng, et al. Multiple Targets Assignment of Multiple UAVs′ Cooperation Based on Improved Genetic Algorithm[J]. Application Research of Computers, 2018, 35(9): 2597-2601 (in Chinese)

[3] 张邦楚, 彭琛, 余新荣, 等. 基于蚁群优化的多弹协同目标分配算法[J]. 弹箭与制导学报, 2012, 32(7): 69-73

ZHANG Bangchu, PENG Chen, YU Xinrong, et al. Cooperative Target Assignment Algorithm of Multiple Missiles Based on Ant Colony Optimization[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2012, 32(7): 69-73 (in Chinese)

[4] 王永泉, 罗建军. 基于多群体改进萤火虫算法的UCAV协同多目标分配[J]. 西北工业大学学报, 2014, 32(3): 451-456

WANG Yongquan, LUO Jianjun. Target Assignment in Cooperative Attacking of UCAVs Based on Multi-Intelligence Improved Glowworm Swarm Optimization Algorithm[J]. Journal of Northwestern Polytechnical University, 2014, 32(3): 451-456 (in Chinese)

[5] 黄国强, 张兵. 基于混合优化算法的多飞行器协同目标分配方法[J]. 指挥信息系统与技术, 2015, 6(6): 76-82

HUANG Guoqiang, ZHANG Bing. Target Assignment Method for Multi-Aircraft Cooperation Based on Hybrid Optimization Algorithm[J]. Command Information System and Technology, 2015, 6(6): 76-82 (in Chinese)

[6] FORTEST S, HOFMEYR S A. Immunology As Information Prcessing, Design Principles for the Immune System and Other Distributed Autonomous Systems[M]. USA, Oxford University Press, 2000: 865-869

[7] CHRISTIAN Wallenta, JUNGWON Kim, PETER J Bentley, et al. Detecting Interest Cache Poisoning in Sensor Networks Using an Artificial Immune Algorithm[J]. Applied Intelligence, 2010, 32(1): 1-26

[8] MCCOY D F, DEVARAJIAN V. Artificial Immune Systems and Aerial Image Segmentation[C]∥IEEE International Conference on Systems, Man, and Cybemetics, 1997: 867-872

[9] 徐克虎, 黄大山, 王天召. 改进的人工免疫算法求解武器-目标分配问题[J]. 系统工程与电子技术, 2013, 35(10): 2121-2127

XU Kehu, HUANG Dashan, WANG Tianzhao. Improved Artificial Immuneal Gorithm for Solving Weapon-Target Assignment Problems[J]. Systems Engineering and Electronics, 2013, 35(10): 2121-2127 (in Chinese)

[10] 阮旻智, 李庆民, 刘天华. 编队防空火力分配建模及其优化方法研究[J]. 兵工学报, 2010, 31(11): 1525-1526

RUAN Minzhi, LI Qingmin, LIU Tianhua. Modeling and Optimization on Fleet Antiaircraft Firepower Allocation[J]. Acta Armamentarii, 2010, 31(11): 1525-1526 (in Chinese)

[11] 刘洪引, 李体方, 王立安. 基于改进人工免疫算法的火力分配[J]. 火力与指挥控制, 2014, 39(10): 171-174

LIU Hongyin, LI Tifang, WANG Lian. Improved Artificial Immune Algorithm Based on Weapon-Target Assignment[J]. Fire Control & Command Control, 2014, 39(10): 171-174 (in Chinese)

[12] 卢有麟, 陈金松, 祁进. 基于改进熵权和集对分析的水库多目标防洪调度决策方法研究[J]. 水电能源科学, 2015, 33(11): 43-46

LU Youlin, CHEN Jinsong, QI Jin. Multi-Objective Decision Making Method for Reservoir Flood Operation Based on Improved Entropy Weight and Set Pair Analysis[J]. Water Resources and Power, 2015, 33(11): 43-46 (in Chinese)

[13] 戚玉涛, 焦李成, 刘芳. 基于并行人工免疫算法的大规模TSP问题求解[J]. 电子学报, 2008, 36(8): 1552-1558

QI Yutao, JIAO Licheng, LIU Fang. Parallel Artificial Immune Algorithm for Large-Scale TSP[J]. Acta Electronica Sinica, 2008, 36(8): 1552-1558 (in Chinese)

[14] 翟仲曦, 钱锋, 杜文莉. 基于定向突变的自适应并行免疫算法[J]. 华东理工大学学报(自然科学版), 2010, 36(1): 88-92

ZHAN Zhongxi, QIAN Feng, DU Wenli. Adaptive Parallel Immune Algorithm with Orthomutation[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(1): 88-92(in Chinese)

[15] 余振华,张其善. 最优路径问题的自适应伪并行免疫算法[J]. 计算机工程与应用, 2009, 45(26): 88-92

YU Zhenhua, ZHANG Qishan. Adaptive Pseudo-Parallel Immune Algorithm on Optimal Path Planning Problem[J]. Computer Engineering and Applications, 2009, 45(26): 88-92 (in Chinese)

Target Allocation Method of Multi -Aircraft Cooperative Air Combat Based on Improved Artificial Immune Algorithm

GAO Yangyang1, CHEN Shuangyan2, YU Minjian2, HAI Jing3, FANG Ruiyue4

1.93175 Troops,The Chinese People's Liberation Army,Changchun 130000,China;2.Air Traffic Control and Navigation College,Air Force Engineering University,Xi'an 710051,China;3.94754 Troops,The Chinese People's Liberation Army,Jiaxing 314000,China;4.95026 Troops,The Chinese People's Liberation Army,Foshan 528000,China

Abstract :Aiming at the target allocation of multi-aircraft cooperative air combat, an improved artificial immune algorithm is proposed based on the modeling for comprehensive superiority function. Firstly, the random generation method and artificial construction method are used to create two initial populations, which ensure the diversity of the initial populations; following is to evolve the populations by adopting two different selection, crossover and mutation operations; then, the designed new immigration operator is used to exchange information among the populations, which further increases the diversity of the populations and improves the search efficiency. Finally, the comparison of the improved artificial immune algorithm with the traditional artificial immune algorithm had been made. Simulation results show that the improved artificial immune algorithm can effectively improve the premature convergence problem, and the search efficiency, the optimal allocation scheme is obtained, which is suitable for target allocation problem of multi-aircraft cooperative air combat and meet the actual operational requirements.

Keywords :multi-aircraft cooperation; target allocation; improved artificial immune algorithm; immigration operator; allocation scheme

中图分类号: V271.4

文献标志码: A

文章编号: 1000-2758(2019)02-0354-07

收稿日期: 2018- 04- 16

作者简介: 高阳阳(1990—),中国人民解放军93175部队参谋,主要从事空域与流量管理研究。

©2019 Journal of Northwestern Polytechnical University.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http ://creativecommons.org /licenses /by /4.0 ),which permits unrestricted use ,distribution ,and reproduction in any medium ,provided the original work is properly cited.

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  

改进人工免疫算法的多机协同空战目标分配方法论文
下载Doc文档

猜你喜欢