苏州工业园区唯亭学校 朱雪兴
摘要:新课标是当前教学的重要目标。为了更好地培养学生的学习能力和创新思维,让学生更好地掌握知识,形成分析和解决问题的能力,在新课标指导下我大胆尝试了初中数学活动与思维能力培养的教学,现体会如下。
关键词:数学活动 数学思维 培养
随着教学改革的不断深入, 根据初中数学新课标要求,教师在教学过程中应引导学生积极参与实践活动,通过动手操作,使学生提高学习兴趣,加深对概念、性质的理解,培养其思维能力;并通过教师在教学中创设实验型思维情境,设计开放性试题,使学生在实践中提高创新思维能力,有效地获取数学知识,从而提高分析问题及解答问题的能力。那么在实际的教学中,应怎样将数学实践活动与数学思维能力培养有机结合,并很好把握,促使教学质量的不断提高,就成为当前数学教学中的研究课题了。
一、在实践活动中提高学生的学习兴趣
兴趣是学生学习的直接动力,它是求知欲的外在表现,它能促进学生积极思考、勇于探索。教师在教学中有效地激发学生的学习兴趣,使学生对所学知识产生了极大的兴趣,那么学生学习的动力,就会促使学生在学习中不断的克服困难,积极的探索、思考,从而提高学生的感知认知能力。教师在教学中认真组织学生通过参加教学实践活动,可以极大地提高学习兴趣,使他们在学习过程中获得成功的体验,并不断获取新的知识。
例如:在讲授判定三角形全等的边角边公理时,我先让每个学生利用直尺和量角器在白纸上作一个△ABC,使∠B=20 ,AB=3cm,BC=5cm,并用剪刀剪下此三角形,然后与其他同学所作三角形进行对照,看看能否重合,这时学生们会发现是能够重合的。接下来让学生改变角度和长度大小再做三角形,剪三角形并对照,这样学生自然会发现每次所作三角形都能够完全重合,此时教师启发学生总结出:如果两个三角形有两边和夹角对应相等,那么这两个三角形全等,即“边角边”公理。通过同学们的动手操作,既活跃了课堂气氛,激发了学生的学习兴趣,又使抽象的数学知识蕴于简单实验之中,使学生易于接受新知识,促进学生认知理解。
二、在实践活动中加深对概念、性质的理解
数学概念、性质、定理等具有高度的抽象性和概括性,如果让学生直接理解,肯定会存在很大困难,所以在数学教学中,教师应该为学生提供一些实物、模型、教具、教学软件等丰富的学习材料,让学生有充分的时间对具体事物进行操作,使他们获得学习新知识所需要的具体经验。通过自己的思维活动来形成对概念的理解,而不是通过机械的重复,记住教师讲述的那些关于概念、性质的现成解释,这样学生所获得的知识才是全面的、清晰的、牢固的。
期刊文章分类查询,尽在期刊图书馆
如在讲“有理数的乘方”时,我从“折纸问题”开展教学,提出问题:“有一张厚度为0.1mm的纸,将它们对折一次,厚度为0.1×2 mm,对折10次,厚度是多少毫米?对折20次厚度是多少?”在学生动手折叠纸张进行计算厚度的过程中,大部分学生计算对折10次时的厚度就显得很为难,他们表现出渴求寻找一种简便的或新的运算途径的欲望,此时,教师适时引出“乘方”的概念,用乘方表示算式0.1×220比用20个连乘简洁明了得多,其值为104.8576米,比30层楼(每层3米)还要高。学生通过这种主动参与教学活动,加深了对“乘方”概念的理解,从而提高了教学效果。
三、创设实验型思维情境,启迪学生思维
动手实验能直接刺激大脑进行积极思维,它不但能帮助学生理解所学的概念,还能让学生通过亲身实践真切感受到发现的快乐。因此,在数学教学中,教师应尽可能为学生提供概念、定理的实际背景,设计定理、公式的发现过程,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程,领悟数学概念、定理的根本思想,掌握定理证明过程的来龙去脉,增强数学学习的自觉性,使学生在对概念形成过程的分析中,在对公式、定理的发现过程的总结论证中,提高主动参与的机会,以便学生在“做数学”过程中启迪思维,突破教学难点。
例如,在《等腰三角形》一课中,我先让学生在一般三角形ABC中,画出过点A的角平分线、中线、高,在得到它们的概念之后,运用投影变化AABC顶点A的位置进行试验,让学生观察上述三条线段的变化情况并提出问题:当AC=BC时,会产生怎样的现象?创设了上述问题情境,学生的思维马上活跃起来,从而积极地投入到这一问题的思考之中。为了解决问题,我让学生画出图形,凭直观发现上面的三条线段互相重合,再让学生画腰上的角平分线、中线、高,通过类比,提出了较为完善的猜想:“等腰三角形底边上的高线、中线、顶角的平分线互相重合。”在这一过程中,学生借助了观察试验、归纳、类比以及概括经验事实并使之一般化和抽象化,形成猜想或假设。此时,我又不失时机地进一步提出问题:“为什么等腰三角形的这三条线段会重合在一起?”再一次创设问题情境,激发学生主动探究说理的方法,从而验证猜想。
教师在教学中应该使学生既长知识又长智慧,学生思维能力的发展,同样也可以在实践活动中逐渐培养。学生通过参加教学实践活动,可以把思维和实践活动有机地结合起来,使他们的思维得到发展。如,在进行“平行线的特征”的教学时,教材给出了两条平行线被第三条直线所截而得到的一个“静态”的基本图形,我设置问题情境:你能用一张不规则的纸折出两条平行的直线吗?说说你的折法。学生在独立未果的情况下,教师给予了恰到好处的点播,最后通过小组合作探究的方式使这一问题得到圆满解决。然后又让学生折出一条直线截这两条平行直线,此时,课本上的三线八角基本图形跃然展现在学生面前,学生根据制作的图形对同位角、内错角、同旁内角分组进行了测量,还有的同学剪下了一个角,把他贴在和它同名的角上,以观察它们是否重合,用来验证这两个角的相等关系,学生在“做中学,学中做”中轻轻松松的学到了知识。
综上所述,结合自己在长期从事数学教学工作中的实践,我认为在新课标的要求指引下,为进一步培养学生的思维能力,创新能力,在教学中教师根据教材内容和大纲要求,结合教材内容有效地组织学生开展数学实践活动,并在活动中认真创设问题情境,巧妙引导学生极积思维、分析、判断,让学生从直观实物中去感知、认知,实现让学生从“做中学和学中做”中不断提高思维能力,不断培养学生分析问题解决问题的能力,并能养成学生良好的学习习惯,有利于教育教学质量的提高。
【参考文献】
[1]常汝吉.数学课程标准[M].北京师范大学出版社,2001.
[2]王礼祥.社会实践活动与数学思维能力的培养[J].考试周刊,2010(5).
论文作者:朱雪兴
论文发表刊物:《成长读本》2017年10月总第23期
论文发表时间:2017/12/25
标签:学生论文; 角形论文; 数学论文; 思维论文; 概念论文; 教师论文; 思维能力论文; 《成长读本》2017年10月总第23期论文;