杭州余杭水务有限公司 311100
摘要:三相异步电动机以其优质价廉的优点,在工农业及日常生活中得到广泛应用。其启动方式有直接启动与降压启动两种方式,直接启动电流大,会对电网造成很大的冲击,直接影响电网中其它用电设备的正常工作,也会影响电动机本身及其拖动设备的使用寿命;因此,如何控制电动机启动电流,具有重要的经济价值。
关键词:三相异步电动机;软启动器;降压启动
一、引言
电动机的启动电流近似的与定子的电压成正比,因此要采用降低定子电压的办法来限制起动电流,即为降压起动。对于因直接起动冲击电流过大而无法承受的场合,通常采用降压起动,此时,起动转矩下降,起动电流也下降,所以只适合必须减小起动电流,又对起动转矩要求不高的场合。文章主要探讨了三相异步电动机的几种降压启动方式。
二、三相异步电动机的几种降压启动
一般容量在l0kw以下的小型电动机可以直接启动,但10kw以上的电动机则应考虑采用降压启动。有时为了限制和减少启动转矩对机械设备的冲击作用,允许全压启动的电动机也多采用降压启动方式。
三相异步电动机降压启动的方法有以下几种:定子电路串电阻(或电抗)降压启动、自耦变压器降压启动、Y-△降压启动、软启动器等。使用这些方法是为了限制启动电流(一般降低电压后的启动电流为电动机额定电流的2~3倍),减小供电干线的电压降落,保障各种电气设备正常运行。
1、三相异步电动机的串电阻(或电抗)降压启动
电动机串电阻(电抗)降压起动是指起动时,在电动机定子绕组上串联电阻(电抗),起动电流在电阻上产生电压降,使实际加到电动机定子绕组中的电压低于额定电压,待电动机转速上升到一定值后,再将串联电阻(电抗)短接,使电动机在额定电压下运行。由于定子串电阻降压启动的启动电流随定子电压成正比下降,而启动转矩则按电压下降比例的平方倍下降。显然,这种方法会消耗大量的电能且装置成本较高,三相异步电动机采用这种启动方法,适用于要求启动平稳小的容量电动机及启动不频繁的场合。
图1 定子串电阻降压启动控制线路图
2、三相异步电动机的自耦变压器降压启动
对于容量较大且正常运行时定子绕组接成星形的笼型异步电动机,可采用自耦变压器降压起动。它是指起动时,将自耦变压器接入电动机的定子回路,待电动机的转速上升到一定值后,再切除自耦变压器,使电动机定子绕组获正常工作电压。这样,起动时电动机每相绕组电压为正常工作电压的1/K倍(K——自耦变压器的匝数比。K= N1/N2),起动电流也为全压起动电流的1/K2倍。
(1)电动机自耦降压启动(自动控制接线图)
图2 三相异步电动机自耦降压启动接线图
图2是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。
(2)电动机自耦降压启动(手动控制接线)
图3 三相异步电动机自耦降压启动接线图
自耦变压器降压起动手动控制接线如图3所示,图中操作手柄有三个位置:“停止”、“起动”和“运行”。操作机构中设有机械连锁机构,它使得操作手柄未经“起动”位置就不可能扳到“运行”位置,保证了电动机必须先经过起动阶段以后才能投入运行。
3、三相异步电动机的Y-△降压启动
三相异步电动机的Y-△降压启动是指,在启动时将异步电动机三相定子绕组接成星形,等启动完成后,再接成三角形。这样,电动机启动时每相绕组的工作电压为正常时绕组电压的1/,启动电流为三角形直接启动时的1/3。
图4 三相异步电动机 Y—Δ 降压启动控制线路图
4、固态降压启动器
固态降压启动器由电动机的起停装置和软启动控制器组成。固态降压启动器的启动方法有两种:(1)电流渐增启动方式,即在启动时,电流线性增加,直达全速为止。启动电流和转矩是可调的,启动电流和电压是按照用户设定的频率平滑连续无极增大。(2)是限流启动方式,即在启动时电动机电流保持恒定,通常可在额定电流的1.5~4.5倍之间进行调节,电动机的电压按斜坡函数稳定升高,直到设定的电流限值。启动电流大小能改变电动机达到额定转速所需要的时间,这种启动方式适合于惯性大的场合。
图5 软启动器主电路原理图
固态降压器有良好的软启动特性、可靠性高、寿命长、维护量小、电动机保护良好以及参数设置简单等优点,但是不能长时间用于启动扭矩要求很高的电动机驱动装置上。这种局限主要因为软启动器实际上是靠将自身电压斜坡式抬升到最大值来完成工作,由于扭矩与电压平方成正比,连接电动机不能从一开始就达到最大扭矩,因此,这种启动器更适合水泵、传送带、电梯等轻型易启动的设备。
5、液态降压启动器
水电阻降压起动可将启动电流控制在3倍额定电流以内,对电网和拖动动设备冲击小,能连续起动,不会烧毁,维护简单。
水电阻降压启动原理图
水电阻软起动装置是依靠溶解在水中的电解质离子导电的,电解质充满与两个平面极板之间(即水电阻的两个极),构成一个电容状的导电体,它能够限制电流的流通,自身压降小,属于无感性元件,也就是说既能降低电动机的启动电流,又使电动机获得较大的端电压,且提高了起动时的功率因数,所以能使电动机100%起动成功。
水电阻软起动装置还有一个特点,实现平稳起动。水电阻的阻值大小是依靠改变水电阻箱内导电介质的浓度和两个极板间的距离来完成的,在现场可根据电动机的实际需要调配,起动过程中,从初始电阻逐渐连续变化为零电阻,起动平稳,无二次冲击电流。
5、软启动
以上几种降压启动的方法是有级启动,启动的平滑性不高,应用一些自动控制线路组成的软启动器可以实现鼠笼式异步电机的无级平滑运动,这种方法称为软启动。软启动分为磁控式和电子式两种。磁控式故障率高,已被电子式取代。
启动过程电机所加的电压不是一个固定值,软启动装置输出电压按指定要求上升,被控电机电压由零安指定斜率上升至全电压,转速相应由零上升到规定转速。软启动能保证电机在不同负载下平滑启动,减少电机启动对电网冲击,又降低对自身承受的较大结构冲击力。
软启动可以设定起始电压、上升方式、启动电流倍数等参数,以适用重载、轻载启动不同情况。
三、异步电动机的优缺点
1、三相异步电动机的优点
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。
2、异步电动机存在的缺点
2.1笼型感应电动机存在下列三个主要缺点。
(1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。
(2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。
(3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。
2.2绕线型感应电动机
绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:
(1)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可靠性,集电环和电刷之间的滑动接触,是这种电动机发生故障的主要原因。特别是集电环与电刷之间会产生火花,使传统绕线型电动机在矿山、井下、石油、华工等防爆要求的场所,对于灰土、粉尘浓度很高的地方,也不敢使用,这就限制了其应用范围。
(2)当前的传统绕线型电动机为了提高可靠性,多数不提刷,因此运行时存在下列电能浪费:集电环和电刷间的摩擦损耗和接触电阻上的电损耗,电刷至控制柜短路开关间三根电缆的电损耗,若电动机与控制柜之间距离很长,则该损耗将非常严重。并且由于集电环与电刷产生碳粉、电火花和噪声,长期污染周围环境,损害管理人员和周围居民健康。
(3)传统绕线型电动机的起动转矩比笼型电动机的有所提高,但仍往往不能满足满载起动的需要,以至仍然需要增容而形成“大马拉小车”。
上述传统感应电动机存在的严重缺点的根本原因在于“起动”、“运行”和“可靠性”三者之间存在难以调和的矛盾,因此势必顾此失彼,不可兼优。
四、结语
异步电动机的起动问题是它在运行中的一个特殊问题。常用的方法有自耦变压器降压起动、Y-Δ起动、软起动、定子串电阻降压起动等。
在电网和负载两方面都允许全压直接起动的情况下,鼠笼式异步电动机仍以直接起动为宜,因为操纵控制方便,而且比较经济。自耦降压起动器是经常被用来起动较大容量鼠笼式异步电动机的降压起动装置。虽然自耦降压起动器是一种老式的起动设备,但利用自耦变压器的多触头降压,既能适应不同负载起动的需要,又能得到更大的起动转矩,加之还因装设有热继电器和低电压脱扣器而具有较完善的过载和失压保护,所以,至今仍被广泛应用。
参考文献:
[1]. 邓星钟,《机电传动控制》,华中科技大学出版社,2001.3
[2]. 秦曾煌,《电工学》,第五版,高等教育出版社,北京,2005.12
[3]. 李永东,《交流电机数字控制系统》,机械工业出版社,2002.5
论文作者:徐雷
论文发表刊物:《基层建设》2015年34期
论文发表时间:2016/10/19
标签:电动机论文; 电流论文; 电压论文; 定子论文; 转矩论文; 绕组论文; 电阻论文; 《基层建设》2015年34期论文;