中国百货零售企业规模经济的实证分析,本文主要内容关键词为:实证论文,中国论文,零售企业论文,百货论文,规模经济论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
规模经济或规模效益是经济理论中的一个重要假设,其基本含义是:在其它条件相同时,生产或销售的产品越多,产品的单位成本就越低,效益就越高。尽管这一概念已广为人知,但是西方学者对于零售企业规模与效益的实证研究至今仍没有一个统一的结论:一些学者的研究支持二者的正相关关系,另外一些学者的研究则没有发现二者有显著的正相关关系(关于此问题的理论回顾,可参看Shaw et al.,1989)。根据笔者所掌握的资料,到目前为止,国内还没有学者对我国的零售企业规模经济进行过实证研究。那么,西方学者有关零售企业规模经济的结论是否与我国的实际情况相符呢?换言之,中国零售企业或零售网点的规模对效益有何影响,如何影响?与西方学者的结论有何异同?这些都是本文试图回答的主要问题。
本文主要应用有关数据资料及定量分析的方法回答上述问题。全文分为四个部分:在第一部分,简要回顾西方学者对于零售企业规模经济的一般论述,并在此基础上建立若干可以验证的假设;在第二部分,主要介绍本文的研究方法,包括数据来源、指标的设立与量化,以及研究所采用的统计方法;在第三部分,给出研究结果,并对研究结果进行讨论;最后一部分,概括结论并说明结论的启示。
一、理论与假设
西方学者认为,零售企业的规模经济主要有两个层次:一个是整体企业的规模经济,另一个是企业各个网点的规模经济(Shaw et al.,1989)。当零售企业只有唯一一个网点时,如我国传统零售业的情况,或如我国目前的一些小型零售企业的情况,这两个层次合而为一。但当零售企业通过开办连锁店的方式扩大规模或涉足其它行业时,这两者就不一致了。本研究从本质上讲属以网点为元素的研究(即第二个层次),而实际上也是以企业为元素的研究(即第一个层次),因为本文所采用的样本企业大多只有一个网点,只涉足零售一个行业。
西方学者的有关研究表明,零售商店的规模会在以下几个方面影响商店的成本与效益:
第一,固定成本的分摊。在零售企业运作中,商店的取暖、降温、照明、工资和管理费用等方面的开支是相对固定的:在一定的规模范围内,它们不会随着零售规模的扩大而上升,或至少不会按同样的比例上升。当商店规模扩大时,由于这些相对固定的成本被分摊到更大的销售额或营业面积上,从而单位产品的平均经营成本或费用会下降。这里要注意区分由商店使用效率的提高导致的成本下降和由零售规模扩大而导致的成本下降。前者出自有效的管理,不仅存在于不同规模的商店之间,也存在于相同规模的商店之间,故不属于规模经济问题;只有后者才是规模经济要研究的内容。
第二,风险抵御能力的提高。大的零售商店有更大的能力抵御不测事件的发生,这不仅表现在大商店有更大的商品贮存可以灵活调配,也表现在大商店有更多的正在使用或准备使用的机器设备足以应付偶然发生的机器设备的坏损,从而避免可能的损失。
第三,单位面积交易量的增大。这是因为,首先,大商店与小商店相比会提供更多的品种,从而强化了消费者“一站买齐”的倾向,即消费者往往会在大商店购买更多品种的商品。其次,大商店给人一种大而全的感觉,会吸引较多的消费者购物;而消费者在购买某一种物品时,经常会顺便购买其它的商品。不同商品的这种交叉影响,也会增大大商店单位面积的交易量。
最后,采购成本的节约。大商店往往有较大的购买力,这使它们在与供应者讨价还价中处于较为有利的地位。它们往往会以较低的价格得到供应者的产品(Shaw et al.,1989;Ingene,1984;Thurik and Koets,1984;Cioni and Milleri,1989)。
根据西方学者的研究成果对于零售企业规模与效益之间关系的揭示,我们有理由提出这样的假设:在其它因素相同的条件下,中国百货零售企业的规模(网点)与效益之间呈正相关关系,即规模越大的商店,效益越好。为了便于检验,我们将其分解为下面三个便于操作的假设:
假设1(P[,1]):规模越大的百货商店,每平方米的销售额和商店的人均销售额越大;
假设2(P[,2]):规模越大的百货商店,每平方米的利税额和商店的人均利税额越大;
假设3(P[,3]):规模越大的百货商店,销售利税率越高。
下面,我们将利用有关数据资料,应用多元线性回归分析方法,对这些假设进行验证,以便揭示中国百货零售企业规模与效益之间的关系。
二、研究方法
1.资料来源与样本
本研究采用数据主要出自国家统计局、国家经济贸易委员会和国家经济体制改革委员会合编、中国统计出版社1993年出版的工具书《中国大中型流通企业》。由于本研究的主要目的在于验证上面的假设,而不是对策研究,故该书所提供的数据并不会因为是较早期的而对研究的有效性产生负面影响。
表1样本的特征统计值(103个样本单位)
最小值最大值均值 标准差
销售额(万元)1889 6498411631.8612164.20
利税额(万元)425368 736.21 1008.21
营业面积(平方米)580
44845 9367.057304.19
员工数量(人)433796 793.92 630.79
该书提供的综合统计资料反映了全国(除西藏、台湾和香港地区)6331家大中型流通企业(包括国内商业、对外贸易、物资供应、饮食、旅游和旅馆等)1991年的主要经济指标。其中,有大中型零售企业1672家。这些零售企业包括百货、五金交电、粮油、副食品、纺织品、医药、图书和农业生产资料等不同类型。根据研究要回答的问题,我们只选择百货零售企业作为样本单位。在1672个大中型零售企业中,有652个是百货零售企业,其中只有103家提供了适合本研究要求的较为详尽的数据。本研究因此将这103家企业作为样本进行分析。表1描述了这一样本的基本特性。
为了检验样本的代表性,我们以总体销售额的平均值和企业平均的从业人员数量为检验值对样本进行了单样本均值检验(the Single-Sample Mean test)。经过这一检验,没有发现样本均值与总体均值之间有明显差异,说明样本有较好的代表性。
考虑到这些企业均为年零售额在2000万元左右或以上的大中型零售企业,所以本研究实际上验证的是大中型百货零售企业的规模经济。因此,研究所得结论不一定适用于小型或其它类型的零售企业。进一步的观察发现,这103家百货企业大多为国有企业。这实际上等于把所有制因素所导致的企业间在效益上的差异消除了。
本研究还有一部分资料来源于1992年的《中国城市统计年鉴》,如各地区的人均国民收入和人口资料。
2.指标设置及测量
规模。按照学术界通行的方法(如lngene,1984,Shaw et al.,1989),本研究将商店的销售额、营业面积和员工的数量作为衡量商店规模大小的指标。考虑到这三者之间高度相关,本研究将其合并为一个综合指标。方法是将这三者相乘,然后取自然对数。这是因为:第一,这一数据对效益的关系是非线性的,通过取对数可将它们的关系化成线性的;第二,这个数据的分布是偏斜的,通过取对数将其化成正态分布(Fox,1991)。这个综合指标越大,则意味着商店的规模越大。
效益。根据所得数据的性质,我们用销售利税率、人均销售额、人均利税率、每平方米的销售额和每平方米的利税额等指标衡量商店或企业的效益。这些指标除了销售利润率,均取自然对数。原因如上面第二条。这些指标越大,商店的效益越好。
控制指标。由于这些企业分布于不同的地区,各地区的经济发展程度、人口的多少和零售企业之间竞争的激烈程度均有不同,而这些因素有可能对企业或商店的效益有较大的影响,所以在我们考虑规模对效益的影响时,必须把这些因素对效益的影响控制住,否则我们很难说清楚效益的提高是规模在起作用,还是其它因素在起作用,为此,我们设置下述三个控制指标:地区经济发展程度指标、人口指标和竞争程度指标。地区经济发展程度指标由各地区人均收入测量,人口指标由各地区人口数量测量,竞争程度指标由各地区大中型零售企业的数目测量。考虑到同类竞争者(即百货零售企业)对样本单位的效益有着更直接、更大的影响,我们将同类竞争者的数量加倍计入到各地区大中型零售企业的数目中。出于与规模指标同样的原因,对这些指标也都取自然对数。
3.分析方法
本研究采用多元线性回归方法进行数据分析。回归模型如下:
As=β[,AS0]+β[,AS1]SCID+β[,AS2]AGNP+β[,AS3]TPOP+β[,AS4]COMP+εAS…………………………(1)
AP=β[,AP0]+β[,AP1]SCID+β[,AP2]AGNP+β[,AP3]TPOP+β[,AP4]COMP+εAP…………………………(2)
Es=β[,ES0]+β[,ES1]SCID+β[,ES2]AGNP+β[,ES3]TPOP+β[,ES4]COMP+εES…………………………(3)
EP=β[,EP0]+β[,EP1]SCID+β[,EP2]AGNP+β[,EP3]TPOP+β[,EP4]COMP+εEP…………………………(4)
SP=β[,SP0]+β[,SP1]SCID+β[,SP2]AGNP+β[,SP3]TPOP+β[,SP4]COMP+εSP…………………………(5)
式中,AS、AP、ES、EP和SP分别表示单位面积销售额指标、单位面积利税额指标、人均销售额指标、人均利税额指标和销售利税率。它们为因变量。SCID、AGNP、TPOP和COMP分别表示规模指标值、地区经济发展指标值、地区人口指标值和竞争程度指标值。它们为自变量。需要再一次提醒的是,除了SP以外,以上所有的数据都是自然对数。各个β为我们要求的参数,各个ε为误差或残差。我们这里最关注的是SCID与AS、AP、ES、EP和SP的关系,即参数如:β[,AS1]、β[,AP1]、β[,ES1]、β[,EP1]和β[,SP1]。在各回归方程通过显著性检验的条件下(各方程的F值的显著性水平a〈0.05),当β[,AS1]和β[,ES1]显著不为零时,假设一得到验证;当β[,AP1]和β[,EP1]显著不为零时,假设二得到验证;当β[,SP1]显著不为零时,假设三得到验证。
三、结果与讨论
表2是通过对数据运行SPSS软件中的多元线性回归分析得到的结果。
①表中的星号表示显著性程度。* * *表示非常显著(a〈0.01),* *表示显著(a〈0.05),*(a〈0.1)与无星表示不显著。
②表中小括号中的数字为各参数的标准差,中括号中的数字为标准系数(Beta)。
先看后面两列数字。这两列数字表示了经过运算之后所得的各方程总的显著性(F值与星号)的拟合优度(R[2])。除了方程(3)不显著以外,其它方程均非常显著。这说明这些方程中的自变量作为一个整体与因变量有显著的线性关系(何晓群,1997)。从拟合优度(R[2])的角度看,方程(1)、(2)、(4)和(5)中的自变量对因变量的解释程度分别是0.222、0.258、0.196和0.155。
再看第二列β[,1]项下的数字。这些数字表示出了我们所关心的商店规模指标(SCID)的系数、显著性水平、标准差和标准系数。其中,方程(2)、(4)和(5)中商店规模指标的系数是显著或非常显著的。再考虑到这些系数均为正的,我们可以推断,商店规模对商店单位面积的利税额(AP)、人均利税额(EP)和销售利税率(SP)均有正的显著性影响,即规模越大,这些效益指标越好。因此,我们接受假设二和假设三。另外,由方括号中的数字(即标准系数Beta),我们可以看到规模指标对效益指标的影响程度。规模指标每提高一个单位,AP会提高0.213个单位,EP会提高0.267个单位,SP会提高0.268个单位。
由于规模指标对于单位面积的销售额(AS)和人均销售额(ES)没有显著性影响(系数的显著性a〉0.05),所以我们拒绝假设一。这说明,规模较大的商店虽然能够吸引较多的顾客来购物,但并不能够使商店面积的销售额和人均销售额显著提高。这与西方的一些研究(Thurikand Koets,1984;Cioni and Milleri,1989)所得到的结论不符。
因为假设一被拒绝而假设二被接受,所以,百货商店的规模效益不是由我们前面所说的理由三,即规模会使商店的单位面积交易量增大导致的。又因为规模的增大没有导致单位面积销售额的增大,却导致了单位面积利税额、人均利税额和销售利税率的增大,所以我们有理由推断,百货商店的规模效益是由各种成本与费用的节约带来的。换句话说,百货商店规模扩大的直接结果是单位商品销售额的成本与费用的节约;这时,单位面积的销售额和人均销售额即使没有因为规模扩大而增加,单位面积利税额、人均利税额和销售利税率也会提高。
再观察三个控制变量的系数β[,2]、β[,3]、β[,4],我们发现,地区经济发展程度(ANGP)对单位面积的销售额(AS)、单位面积的利税额(AP)和人均利税率有显著或非常显著的正的影响。地区人口总量(TPOP)对单位面积的销售额(AS)和单位面积的利税额(AP)有非常显著的正的影响。而竞争程度(COMP)只对销售利税率(SP)有显著的负的影响。
四、结论及启示
第一,规模的扩大至少对大中型百货商店的经济效益有正的影响,即规模越大的大中型百货商店效益一般越好。这也许可以解释为什么近些年来各地区、尤其是一些大中城市的百货商店纷纷扩大规模这一现象。比如,截至1997年年底,北京市共新和改建了70家营业面积超过1万平方米的大型百货商店,而且还有数家正在建设中(李明义,1998)。而在1994年,全国还只有100来家营业面积超过1万平方米的大型百货商店(赵尔烈,1995)。商家行为的背后,很可能是他们意识到了规模对百货商店效益的正的影响。
第二,百货商店的规模经济不是来自于规模增大所导致的单位面积交易量的增大,而是来自于规模增大所导致的各种成本与费用的节约。这告诉我们,在百货商店进行扩大规模决策时,重要的是要考虑扩大规模能否降低成本与费用。
第三,百货零售企业的规模效益与地区经济发展程度和市场竞争的激烈程度密切相关。这可以部分地解释为什么近年来国内很多商店扩大规模并没有取得预期的效果。近年来国内许多地区百货零售企业扩大规模后效益不升反降,主要原因可能有两点:一是不顾本地区的经济发展程度和消费能力盲目上规模;二是各地区大商店发展过多,导致过度竞争,进而导致大商店的效益下降。因此,今后各地区百货零售企业在进行是否上规模、上多大规模的决策时,一定要充分考虑本地区的经济发展程度和市场竞争状况等因素。
最后,笔者要指出本研究的缺陷以免误导他人。(1)本研究的样本仅局限于大中型百货零售企业,而且是非随机抽样,所以当研究结果应用于其它类型的零售企业或小规模的零售企业时,不一定准确。(2)虽然本研究不以建立预测模型为目的,但这里的几个回归模型可以用作预测模型;不过,需要注意的是,其中的变量,除SP以外,均为取过自然对数的数据。(3)本研究用的是较早时期的数据,虽然用于检验我们这里的假设没有问题,但如果将我们通过这些数据建立起来的回归模型用来进行预测,则要注意预测的有效性,最好用近期的数据检验其有效性。