杭州智达建筑科技有限公司 浙江杭州 310058
摘要:一般来说,厅堂建筑它们的的建筑空间相对于其他建筑来说其空间都比较大,所以在设计的过程中对于建筑内部的声学设计必须要设计合理,以保证其听音质量,所以只有了解掌握厅堂建筑声学设计中的要点和手段,才能保证厅堂建筑在最终建成之后能够具有良好的听音质量。
关键词:厅堂建筑;声学设计要点;手段分析;
随着我国经济的快速发展,人们不再仅仅满足于物质需求,对精神文明的需求也日益提高,同时快速发展的经济又为精神文明发展提供了物质保障,近些年来我国各地纷纷兴建的音乐厅、剧院等就是较好的证明。作为听音场所,厅堂建筑的听音质量是第一重要的,因此必须认真做好建筑声学设计,确保其音质。只有明确建筑声学设计的要点和手段,才能保证厅堂建筑具有良好的音质。
一、厅堂室内的建筑声学设计的主要内容
厅堂内的建筑声学设计主要有两大方面的内容,外界噪音的控制和音质的设计。一方面,大型厅堂里面必须能够保持相对的安静,尽量减少外界环境噪音对室内声音的冲击,营造出一种安全静谧的氛围,才能使观众不受干扰、专心致志的欣赏演出;另一方面,要求室内的设计布局有良好的声学特性,音质良好,又要防止设计缺陷,如回声、声聚焦等,保证有足够的的响度却又不失自然,合适的混响时间、足够的空间感等。
二、建筑声学设计的要点
一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。
2.1噪声控制
通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。保证厅堂建成后能达到预定的室内噪声标准。此外,建筑声学设计的另一个重要任务就是进行室内音质设计。
2.2音质设计
音质设计通常包括下述工作内容:
(1)确定厅堂体型及体量。(2)确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。(3)对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。(4)计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。(5)进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。(6)声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。
期刊文章分类查询,尽在期刊图书馆(7)缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。(8)可听化主观评价。可听化技术是通过仿真计算。或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。(9)建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。(10)对电声系统设计提供咨询意见。对于需要安装电声系统的厅堂,建筑声学专家尚需与音响工程师配合,对电声系统的设备选型、设计与安装提供咨询意见。(11)组织主观评价。对于重要厅堂,在工程落成后,组织专门的演出和主观评价,来检验建成后厅堂的音质效果,是建筑声学设计最后一个重要环节。
三、声学设计的手段
准确地预测房间的音质效果一直是建筑声学研究者追求的理想。厅堂音质模型测定是建筑声学设计的重要手段。随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。近年来,使用基于有限元理论的方法模拟声音的高阶波动特性,在低频模拟上获得了一些进展。
厅堂中短延时反射声的分布,是决定音质的重要因素。在缩尺模型中,用电火花作为脉冲声源测得的短延时反射声分布,与实际大厅的短延时反射声分布有良好的对应,对在设计阶段确定厅堂的大小、体型等有重要参考意义。混响时间是公认的一个可定量的音质参数,通过模型试验可以预测所要兴建厅堂的混响时间。声场不均匀度也是一个重要的音质参数。
模型试验的测量系统、测量方法和结果的表达与实际厅堂相同,但需要根据厅堂模型的缩尺比s,在混响时间测量和声场不均匀度测量时对测量频率作相应改变。不同频率的声波,在空气介质中传播,特别是高频声波,它的由空气吸收引起的衰减在不同温、湿度条件下差别很大,对混响时间测量结果,需采取对空气吸收的影响作相应的修正,且有足够的精度。
对于短延时反射声分布测量,厅堂音质模型的缩尺比s一般采用1/5或1/10,也有采用1/20的,但因受试验设备和频率过高的限制,精度受到一定影响。对混响时间的测量,缩尺比s为1/20时只能对应实际厅堂1000Hz或2 000Hz以下的频率。推荐缩尺比s不小于1/10,对混响时间和声场不均匀度的测量可扩展至实际厅堂中的4000Hz。短延时反射声分布测量的精度也较高。
模型的内表面形状,有些起伏尺寸比较小,对声波的反射和扩散没有多大影响,在制作模型时可适当简化。但必须保留等于或大于实际厅堂中声波为2000Hz的波长的起伏,不能省略。因为这些部分会对声场的不均匀度有较大影响。要使厅堂音质模型的内表面各个部分,包括观众席的吸声系数在所测量的频率范围内与相对应的实际厅堂内表面各部分及观众席的吸声系数完全相符,实际上有很大难度,因此允许有±10%的误差。
为了避免在模型中的背景噪声过高导至动态范围达不到要求而影响精度,厅堂音质模型的外壳必须有足够的隔声量。舞台空间大小、形状及吸声状况,对观众厅的短延时反射声分布、混响时间及声压级分布有很大影响。在模型试验时,这部分宜包括在内。舞台空间部分的吸声状况也应进行相应的模拟。
短延时反射声分布测量所用的声源信号为电容器放电时产生的脉冲声,适于用做模型试验中的脉冲声源信号。声源中心位置规定为一般演出区的中心,高度相当于人口的高度。声场不均匀度测量的声源位置与高度,与混响时间测量相同。短延时反射声分布测量常用的方法是将接收到的直达声和反射声信号经过放大,以时间为横轴在示波器上显示,即脉冲响应声图谱(回声图)。
接收用传声器,可以用电容传声器或灵敏度比较高的球形压电晶体传声器。传声器口径不宜过大,防止传声器的圆柱体型在接收位置对声场形成影响。在测量时要求记录模型内空气的温度和相对湿度,是为了修正由于高频声在模型内过量的空气吸收所造成的低于实际厅堂混响时间的偏差。
结语
越来越多的音乐厅、剧院在我国落地扎根,成为人们欣赏艺术、陶冶情操的圣地。希望建筑的设计者们能够寻求到建筑外表和内在声学设计的平衡,从而建造出一座座即拥有出色外形、又具备优秀的声学效果的建筑。
参考文献:
[1]周俊立. 关于厅堂建筑声学设计要点和手段综述[J]. 建材与装饰, 2017(28).
[2]范国志. 多功能厅的建筑声学设计[J]. 音响技术, 2007,(03) .
[3]乐意, 赵其昌, 沈勇,等. 大型厅堂的建筑声学设计方法研究[J]. 南京大学学报(自然科学), 2011, 47(2):208-217.
[4]王季卿. 音乐厅的音质与建筑[J]. 城市建筑, 2010,(09)
[5]李志斐. 专业话剧院建筑声学设计研究[D]. 湖南大学, 2009.
论文作者:魏梦婷
论文发表刊物:《建筑学研究前沿》2017年第30期
论文发表时间:2018/3/9
标签:厅堂论文; 声学论文; 音质论文; 建筑论文; 测量论文; 缩尺论文; 混响论文; 《建筑学研究前沿》2017年第30期论文;