(国网江苏省电力公司检修分公司南通运维分部 226000)
摘要:人们生产生活中需要电力维持正常,因此电力系统的安全性和稳定性会对人们的生产生活产生直接的影响。为了能够确保电力系统的安全性和稳定性,必须对电力系统进行检测、控制和保护,而继电保护与故障检测均能够在电力系统运行中应用,是保证电力系统安全性的重要措施。基于此,本文主要分析了电力系统继电保护及故障检测的作用,阐述了电力系统继电保护常见故障检测方法,并针对综合故障分析系统的继电保护与故障检测方法进行了深入研究和探讨。
关键词:电力系统;继电保护;故障检测;方法
1、电力系统继电保护及故障检测的作用
继电保护及故障检测的主要作用就是保证电力系统的安全性,如果电力系统中继电保护的设备和元件出现故障问题,则此时继电保护装置能够体现出选择性、灵敏性、速动性和可靠性特征,向存在故障的设备和元件最近的断路器发出切断指令,确保故障能够被切断,避免故障问题的扩散,降低故障设备和元件对电力系统的破坏程度,提高电力系统的安全性。继电保护装置及故障检测还能够针对电力系统中的保护设备和滤波设备等二次装置进行实时监控,确保电力系统安全稳定运行。同时继电保护装置及故障检测还能够实现对电力系统异常情况的自动分析,且具有快速性和准确性,能够高效诊断出故障发生位置和故障性质。电力系统中设备出现故障或处于异常工作状态时,继电保护装置能够根据设备的运行维护标准和异常工作情况进行提示,即通过发出报警信号的方式,确保工作人员能够及时了解到电力系统中存在异常运行情况,同时能够以最快的速度进行处理,保证设备的安全性。如果设备出现故障时,现场没有工作人员,则继电保护装置能够直接针对系统进行处理,如切断故障电气设备,以确保电力系统的安全性和稳定性。
2、电力系统继电保护常见故障检测方法
2.1 利用空间电磁场探测单相接地故障支路
当电力系统发生单项短路故障后,在短路点处前支路和后支路的零序电流及零序电压会有很大不同,其周围电场及磁场的分布也会不同,因此,可以依据零序电场和磁场来确定故障点的位置。判断依据如下:
2.1.1 小电流接地系统稳定性
以典型的10kV线路为例,对五条支路进行故障点实验,首先确定正常支路的参数,然后与待检测故障线路进行对比分析,并将故障线路零序电流、电压等数据记录下来。没有故障的线路容性电流要超前电压90°,且零序功率为负值;发生故障的线路在短路位置之前零序电压落后电流90°,功率仍为负数,而短路之后零序电压超前电流90°,功率为正值。以此便可以判定出故障点位置,从而为电力系统及时排除故障保证稳定可靠运行奠定基础。
2.1.2 配电线路磁场与电场的分布
一旦电力系统中某条线路发生故障就会引起线路周围磁场的变动,在不考虑互感的条件下,可对配电网中各接地点进行磁场探测,从而得出电压与电流磁场的分布,利用五次谐波电流作为检测信号,进而达到确定故障点的目的。
2.2 识别故障支路和故障接地相
小电流接地故障发生后,将会出现一段比较明显的暂态过程,可通过建立数学模型获得故障发生一段时间内的电流或电压波形,并测量出电流的畸变量,然后对接地点的电压或电流信号进行小波变换,从而得到频谱图像;最后分析出电流特征量和故障频带特征值,从而在不影响电力系统正常运行的情况下,对故障线路和故障点进行确定。小波变化方法有一定局限性,实际应用中可以与神经网络、蚁群算法等结合,以保证故障检测的高效性,从而准确地确定故障类型。
期刊文章分类查询,尽在期刊图书馆
2.3 制定继电保护装置管理和检测体系
制定科学合理的故障管理体系能够确保系统故障后得到及时处理,延长供电持续时间。在满足继电器保护精度要求的前提下,完善保护和检测系统将有助于发挥继电保护的功能。对电力系统的每项操作都做详细的记录,可以为继电保护排除故障提供一定的参考,健全各项管理制度和维护制度,并对运行的每个阶段进行详细分析,可有效提升继电保护的效果。
3、综合故障分析系统的继电保护与故障检测方法
3.1 网络化继电保护与故障检测方法
继电保护装置是保证电力系统安全稳定运行的重要设备,为了确保继电保护个主要设备的保护装置的可靠性,可以采用网络化继电保护与故障检测,即实施微机保护装置网络化,实现对保护装置的差动和纵联串联保护。微机保护装置网络化主要是由主站进行统一协调和管理,如提供数据通信与处理等支持,同时还能够保护继电保护装置安装处的电气量,判断出故障位置、故障参数、故障性质和故障原因等,继而快速准确的切除故障元件,提高电力系统和继电保护系统的安全性和可靠性。
3.2 自适应控制继电保护与故障检测方法
采用自适应控制保护系统,主要是针对电力系统的运行方式变化和故障状态变化等进行检测,同时可以根据实时变化状态自动改变保护性能,确保能够适应电力系统各种转台变化,提高输电线路距离保护、发电机保护、变压器保护等电力系统响应与继电保护系统的系能,实现继电保护系统可靠性。
3.3 人工神经网络继电保护与故障检测方法
采用人工神经网络继电保护与故障检测,主要是依据生物神经系统的神经网络、模糊逻辑、遗传算法等,将其应用在电力系统继电保护中,以期提高继电保护的作用。人工神经网络技术具有自组织、自学习、自适应等能力,且还能够实现分布式信息存储和并行处理,同时还能够明确判断出电力系统中发故障的方向,判断出故障的类型,同时检测出故障的距离,实现对电力系统各个设备的保护。
3.4 变电站综合自动化继电保护与故障检测方法
变电站综合自动化继电保护与故障检测措施主要是将自动控制系统、计算机信息采集系统和处理、网络通信系统等多个技术综合在一起进行电力系统保护,包含测量功能、信号功能、保护功能、控制功能、计费功能、继电保护功能、紧急控制功能、故障录波功能、RTU功能、维修状态信息处理功能等,实现对电力系统的综合化管理。变电站综合自动化计算机系统能够替代工作人员实现对数字化变电站的监测,包含监视、控制、操作、测量、记录和统计分析,同时还能够实现对故障状态的监视,针对故障问题及时发出报警信号,且能够针对故障按照顺序进行记录。实现利用通信网络针对变电站整体协调问题和功能单一问题等进行处理,将其分割成各个独立的装置,同时满足资源共享、远方控制与信息共享等变电站集成自动化。此外变电站集成自动化系统,能够将间隔继电保护的控制、保护、数据处理等全部集成在多功能数字装置中,采用光纤总线进行连接,以确保满足间隔内部、间隔间、间隔同站级间的网络通信,从而实现对整个继电保护系统的优化。总之,继电保护开关的故障检测对保障电力系统的运行安全和人们生命财产安全具有较大的意义。目前,小电流的接地方式、空间电磁故障处理支路以及故障接地等多种故障检测的新方法层出不穷,且网络数据具有自动化、网络化的发展趋势,数字化变电站也越来越多。继电保护的开关和故障检测逐步进入了自动化控制检测的人工智能时代,电力网络也获得了飞速发展。此外,电力数据的测量、保护及大网络环境下的数据通讯一体化的出现,无不预示着我国未来的社会经济发展前景非常广阔。
参考文献:
[1]易志鹏.输电网故障行波网络保护方法研究[D].长沙理工大学,2014.
[2]熊小伏,陈星田,曾星星,欧阳金鑫,陈涛,钟加勇.基于广义变比辨识的继电保护电流测量回路故障诊断方法[J].中国电机工程学报,2014,S1:76-84.
[3]蒋祝巍.基于小波和多目标分析的直流接地故障检测方法的研究[D].东北农业大学,2014.
论文作者:张秦
论文发表刊物:《电力设备》2017年第14期
论文发表时间:2017/9/1
标签:故障论文; 电力系统论文; 继电保护论文; 电流论文; 保护装置论文; 变电站论文; 支路论文; 《电力设备》2017年第14期论文;