六年级数学论文博客
2023-04-17阅读(159)
问:数学论文小学六年级
- 答:关于一个中国古代皇帝的故事。
皇帝爱上一项称为“围棋”的游戏,决定嘉奖此项游戏的发明者。他把发明者召入宫并且宣布要满足发明者的一个愿望。 “陛下,我深感荣幸。”发明者喃喃说,“我的愿望是你赏我一粒米。” “只是一粒米?”皇帝很惊讶。 “是的,只要在棋盘上的第一格放上一粒米,”发明者说,“在第二格上放上二粒米,在第三格上加倍至4粒。。。依次类推,每一格均是前一格的双倍,直到放满整个棋盘为止。这就是我的愿望。” 皇帝很高兴。“如此廉价便可以换得这么好的游戏,”他心想,“我的祖辈们一定恩泽于我了。” “好的!”皇帝大声说,“把棋盘拿出来让在座的各位见证我们的协定。” 皇宫的人都聚集到棋盘边。厨房的仆人一磅重的一代米送给发明者。发明者笑着打开了袋子。 “我建议你回厨房换一个大的袋子,”发明者对仆人说,皇宫里的人大笑起来,误认为这句话是讽刺的意思。然后发明者开始在棋盘上摆放米粒,每放一格便倍增米粒的数量。 当第一排的8个格放满时,1。。。2。。。4。。。8。。。16。。。32。。。64。。。128粒米,旁观者大笑着,指指点点。但放到第二排中间时,咯咯的笑声渐渐消失了,而被惊讶声所代替,因为小堆的米不久就增成了小袋的米,然后倍增成中裂源者袋的米,再倍增成大袋的米。
到第二排结束时,皇帝知道他犯了个极大的错误。他欠发明者的米粒数为32768,而还有48个格子空着呢!
我问:启德先生,假如您是这位皇帝,您该如何处置?
启德曰:假如我是皇帝,我会信守承诺,因为君无戏言.我会说: 我很欣赏你的才能,我决定兑现我的诺言,不裂槐过你必须计算出我应该赏你多少粒肆薯米,否则我无法奖赏您.发明家可惜不是数学家,无法计算米粒数量,于是自愿提出终止游戏.
问:六年级数学小论文(600字左右)
- 答:【容易忽略的答案】
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出销帆的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,皮衫列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)亏握雹。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
问:六年级数学小论文
- 答:感悟数学
曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。
数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。
数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。
其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面差知积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。
数学,凯枝就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们虚孙消爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。
记住,站在峰脚的人是望不到峰顶的。