反例在初中数学教学中的精彩运用_数学论文

例谈反例在初中数学教学中的妙用,本文主要内容关键词为:妙用论文,初中数学论文,反例论文,教学中论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

数学中的反例,是指符合某个命题的条件,而又不符合该命题结论的例子.说得更简洁一点,反例就是一种指出某命题不成立的例子.当然,从某种意义上来说,所有例子都可以称为反例,因为它总可以指出某命题(甚至是非常荒谬的命题)不成立.但这里,我们讨论的反例,是建立在数学上已证实的理论与逻辑推理基础上的,并且具有一定作用的反例.举反例也是一种证明的特殊方法,它可证明“某命题不成立”为真.反例和证明推动了数学学科的发展,在数学教学中具有同等重要的作用,反例因其简明、直观、说服力强等突出特点,决定了它在教学中起着不可替代的作用.恰当地运用反例进行教学,引导学生从反面去思考问题,将有助于学生数学素养的提高,使教学达到事半功倍的效果.下面,笔者将结合自己的教学实践和体会,举例说明反例在初中数学教学中的妙用.

一、反例的作用

1.发现原有理论的局限性,推动数学向前发展

举反例可直接促进数学新概念、新定理与新理论的形成和发展.数学史表明,对数学中探索的重大课题与数学猜想,能举出反例予以推翻,与给出严格证明予以肯定,是同等重要的.

2.澄清数学概念与定理,为数学的发展作出贡献

数学中的概念与定理有许多结构复杂、条件结论犬牙交错,使人不容易理解.反例则可以使概念更加确切与清晰,将定理的条件、结论之间的充分性、必要性指示得一清二楚.数学中有许多这样的反例.

3.帮助学生学习数学基础知识,提高他们的数学修养与培养科学研究能力

数学是一门严密的科学,它有自己独特的思维特点和逻辑推理体系.不能凭直观或想当然去理解它,这样往往会“失之毫厘,差之千里”,而在数学教学中,让学生掌握严密的逻辑推理与思维特点的同时,还掌握各类反例,这才会更深刻掌握数学基础知识,以及提高数学修养与培养科学研究能力.

二、反例在数学教学中的妙用

1.通过反例来加强学生对知识点的理解

数学学习过程中,对于一些不易理解和掌握的知识点,学生常常容易混淆或忽略它们的某些本质属性,尽管教师反复强调,学生还是容易出错.如果教师在讲解过程中能够适当地举一些反例,通过反例来加强学生对这一知识点的理解,将会有意想不到的收获.

例如,在讲解三角形全等的判定方法时,其中的一种方法是“有一个角和夹这个角的两边对应相等的两个三角形全等(SAS)”,这里,必须强调“夹这个角的两边”.因此,教师可以提问学生“有一个角和两边对应相等的两个三角形一定全等吗?”由于和教材中的定理不一致,大部分学生肯定会回答说“不一定”,这时教师继续追问“你能举出一个反例来说明吗?”即让学生用反例来说明命题“有一个角和两边对应相等的两个三角形全等”是错误的.在学生讨论时,教师提示:“可以画出图形来说明.”此时课堂气氛活跃,学生个个情绪高涨、跃跃欲试,都在画图尝试.最后,全班一起总结、交流,归纳出反例,列举如下:

(1)如下页图1,在等腰△ABC中,AB=AC,D是BC上一点,则在△ABD和△ACD中,满足一角(∠B=∠C)和两边(AB=AC,AD=AD)对应相等,显然△ABD和△ACD不全等.

(2)如下页图2,在△ABC中,延长BC至D点,连接AD,使AD=AC,则在△ABC和△ABD中,满足角(∠B=∠B)和两边(AB=AB,AD=AC)对应相等,显然△ABC和△ABD不全等.

(3)如图3,在等腰梯形ABCD中,AB=DC,连接BD,则在△ABD和△CDB中,满足一角(∠ADB=∠CBD)和两边(AB=DC,BD=BD)对应相等,显然△ABD和△CDB不全等.

通过上述反倒教学,学生清楚地认识到:在运用这一判定方法时,必须是“一角和夹这个角的两边(SAS)”,而不是“一角和任意的两边(ASS)”.并知道了由上述反例可以说明命题“有一个角和两边对应相等的两个三角形全等”是错误的命题.这样的反例,使学生印象深刻,有利于学生对知识点牢固掌握.

2.通过反例来证明命题不成立

要证明一个命题不成立,可以从正面直接证明,也可以举一个反例来证明.在学习数学概念时,需要让学生记住引入概念的正例,同时还需要记住几个与概念相悖的反例,以从不同的角度加深对概念的理解.在初中数学中,更多的是让学生利用举反例的方法来做一些判断题.例如,让学生判断以下命题是否为真命题:

(1)如果两个角互补,那么这两个角,一个是锐角,一个是钝角;

(2)两个无理数的和一定是无理数;

(3)面积相等的两个三角形是全等三角形.

这些数学语言对学生而言比较抽象,容易混淆,如果通过举反例的方法来解答就比较容易.对于问题(1),只需举出反例“两个直角互补”;对于问题(2),只需举出反例“+(-)=0”;对于问题(3),只需举出反例“Rt△ABC的两直角边均为2,面积为2,Rt△DEF的两直角边为1和4,面积也为2.它们的面积相等但不全等”.

由此可见,举反例的优点在于:只需找出一个反例就可以说明命题是错误的.所以,在平时的教学中,应鼓励学生寻找反例,引导学生从反面去思考问题,从而快速地解答一些题目.

3.通过反例巩固所学知识

在讲解某些知识点时,为了让学生进一步巩固所学的内容,教师可以举出一些反例,让学生判断是否符合这些知识点.

例如,为了让学生明确一元一次方程必须同时满足以下3个条件:(1)方程两边都是整式;(2)只含有一个未知数;(3)未知数的次数是1.在讲完这一概念后,教师可立即给出一些方程,让学生判断它们是否为一元一次方程,若不是,让学生说明理由.

显然方程(2)、(3)、(7)、(8)不是一元一次方程,因为方程(2)、(7)的左边不是整式,方程(3)的未知数的最高次数为2,方程(8)含有两个未知数,这些都与一元一次方程的条件不相符.但仍有一部分学生判断不出来,特别是方程(2)、(5)、(6)、(7)容易出错,因此,可以在这里先带领学生简单地复习一下整式的概念.对于方程(6),应注意提醒学生其中的π是常数而不是字母.这样,当教师结合这八道小题再次分析一元一次方程的三个条件时,学生就会更深刻地理解什么样的方程才是一元一次方程.

4.通过反例预防学生易犯的错误

例如,在解一元一次方程时,学生容易犯的错误是:去分母时漏乘不含分母的项;去掉分母后,忘记将分子是多项式的加上括号;去括号时漏乘括号里的项或不变号;移项时不变号.基于这些常见错误,教师在讲解时,可以举出如下反例,并让学生判断“这样的解法对吗?”

去分母,得2(3x-1)=1-4x-1.

去括号,得6x-1=1-4x-1.

移项,得6x-4x=1-1+1.

合并同类项,得2x=1.

学生经过仔细观察,发现了其中的错误:去分母时,等号右边的“1”没有乘以“6”;去掉分母后,“4x-1”没有加小括号;去括号时,“3x-1”中的“-1”没有乘以“2”;移项时,“-4x”从等号右边移到左边没有变号.

这是一个典型的反例,它几乎集中了学生解一元一次方程时易犯的所有错误,在解决这个问题之后,教师可以让学生在每次做题前,先想一想这个反例,回忆应该注意些什么,从而有助于学生巩固正确的解题思路,预防解题错误.教材中的例题通常都是正例,用来告诉学生应怎样规范地解题,同时,像这样的反例也是必要的.因此,在平时的教学中,应注意将正、反例有机结合,以帮助学生更好地掌握所学内容,预防错误的出现.

5.将学生练习过程中出现的错误作为反例来分析

在学生练习的过程中,会出现许多错误,这就是学生自己“生成”的反例,教师如果能够有意识、有针对性地安排一些练习,再对学生练习中出现的错误(反例)及时进行讲解、点拨,就可以有效减少学生类似错误的出现.

例如,在讲解“因式分解”时,许多学生都容易犯“分解不彻底”的错误,教师可以选取一些合适的题目让学生练习:

通过这样的练习,既调动了学生学习的积极性,又直观地告诉学生:在因式分解时,一定要仔细检查最后的结果,看能否继续分解.应检查各项是否还有公因式(如问题(3));是否还可以用公式法继续分解(如问题(1)、(2)).同时还应注意:切忌将问题(2)分解成“”的形式,因为因式分解是把一个多项式分解成几个整式的积的形式,而从“”到“”,是在做整式的乘法而不是因式分解.这些都可以通过以上练习中的错误(反例)向学生指出并强调,能有效减少学生今后类似错误的发生,并且巩固了因式分解的概念.

同样地,在学生的作业中也会出现许多错误,从中可以清楚地了解学生对知识的掌握情况.因此,教师要重视学生的作业,及时对作业中的错误进行讲解,在讲解时不要图方便而直接告诉学生错在何处.这样虽然可以节省时间,但是学生往往并没有真正掌握.教师可以把错题展示给学生,让大家一起讨论、分析,共同找出错误的原因所在.

教师应重视学生在学习过程中“冒出”的这些错误,使之成为有用的教学资源.当然,作为教师,首先要尊重、理解出错的学生.只有这样,才能使反例教学成为课堂教学的“调节器”,使学生有一个宽松的学习环境;才能让学生在对“正确”与“错误”的探究中,不仅“知其错,而且知其所以错”.

综上所述,通过反例教学,可加深学生对基本概念的理解和对基础知识的掌握,发现并纠正学习中的错误,培养学生的创新能力和良好的思维品质.在初中数学教学中,恰当地应用反例进行教学,引导学生从反面去思考问题,将有助于数学教学质量的提高和学生数学素质的培养.只要教师在教学过程中合理地运用反例,适当地构造反例,就能使学生不断地完善数学概念,提高分析、判断问题的能力,从而达到事半功倍的教学效果.

标签:;  ;  ;  ;  

反例在初中数学教学中的精彩运用_数学论文
下载Doc文档

猜你喜欢