智能变电站继电保护可靠性探究论文_陈才广

智能变电站继电保护可靠性探究论文_陈才广

(福州维思电力勘察设计有限公司 福建福州 350011)

摘要:智能变电站保护调控一体化实现各个系统的互联互通,提高变电站的继电交互能力,支持对变电站进行保护调控。智能变电站继电保护可靠性和电力系统运行的安全性与经济性息息相关,但当下智能变电站经常发生故障,迫使相关技术人员必须大力探究继电保护可靠性,保证智能变电站安全稳定运行,保证电力系统健康稳定发展。

关键词:电力系统;智能变电站;继电保护;可靠性

1导言

智能即为人性化,是通过对人类意识和思维过程的模拟,达到像人类在调节一样的效果。在人工智能发展的大环境下,智能变电站得到了越来越广泛的应用,与人们的生活生产息息相关。继电保护系统是在智能变电站发生故障或异常时,自动切除故障设备或通知人员对故障进行消除的系统,保障着电力系统的稳定运行。

2继电保护装置在智能变电站中的应用特点

2.1保护变压器

应用变压器保护法可以提升变电站中变压器的使用安全性,变压器有额定电压,当经过变压器的电流增大时,就会导致变压器中的额定电压显著上升。当变压器中的实际电压值超过变压器中的额定电压值时,就会对变压器造成破坏。由此可见,将变压器的电压值调节到额定电压以内就可以对其进行保护。

在利用配电保护装置对变压器进行保护时,需要分析装置的应用特点,将配电线路中的电压调节到额定限度之内,这样就能保证配电电压的稳定性,实现对变压器的保护。在对变压器进行保护时,通常采用分布式的保护方法配置电压,显示电路中的电压异常。在进行配电保护工作时,也可以采用独立安装法建立非电量继电保护途径,使用电缆接通路由器的方式安装继电保护装置,完成对变压器的保护。

2.2提升运维安全性

在智能变电站中应用继电保护装置可以提升用电安全性,保护标准是依IEC61850的体系设计的。也就是说,使用网络信息技术可以对变电站内中的各个电路元件实施监控。相对的是,网络是一把双刃剑,网络的应用会增加计算机系统日常的运维风险,网络病毒的入侵也会造成智能变电站的管理异常,出现数据遗失和数据泄露的情况。对于这种现象,就需要应用过去的经验,优化继电保护系统,提升智能变电站的运维安全性。

2.3提升管理的可靠性

应用继电保护系统,提升了智能变电站中的系统保护性,对变电站进行数字化建设。合理设置继电保护装置,保证系统结构的稳定性,提高了变电运营工作管理的可靠性。智能变电站为社会上的工业生产、人们的生活等提供电量。智能变电站的日常工作容易受到外界因素的影响,所以在运维管理过程中,需要提升电子设备的稳定性和安全性,充分考虑电磁兼容问题,发挥继电保护系统的整体效果,削减不良因素,建立预警机制,及时对智能变电站中的运维异常做出反应。

3智能变电站继电保护可靠性提升策略

3.1提升变压器保护的可靠性

电力系统对电压额度有一定的要求,因此,确保电压额度的准确性才能保证电力系统供配电的正常运行。在实现对电压的有效控制的过程中,变压器系统的运用起着决定性的作用,故而提升变压器保护的可靠性对保证电力系统的运行起着重要的作用。基于变压器系统对变电站继电保护系统可靠性的重要作用,在变电站配置变压器的过程中,可以采取分布式的方法进行配置,这样可以分散变压器系统的压力,可以避免由于变压器承受过大压力而出现问题。而在继电保护系统的后期配置中,需要将分散配置与集中式配置进行结合,以此来降低系统的复杂性,实现变压器对继电保护系统的保护作用,进而提升继电保护系统的可靠性。

期刊文章分类查询,尽在期刊图书馆

3.2做好过程层的继电保护

过程层的继电保护主要是通过对电力系统中母线、变压器和配电线路等进行保护,实现降低电力系统运行风险,对电力调度系统实施必要的保护,进而实现保障电力系统安全运行的目的。通常来说,继电保护系统的稳定性能保证电力系统在发生波动时,保护定值稳定,从而保障电力系统的稳定运行。但是,在智能变电站中存在着大量一次设备的应用,在此过程中,应注意开关与硬件的分离,保证开关和硬件的相对独立性,进而对变电站母线和输电线路实施保护。在实际的继电保护工作中,可以通过多段线路保护的方式对智能变电站母线和变压器保护进行定义。在变电站主站采样的同时,进行采样数据的实时调整,保证采样数据的适用性和可靠性。

3.3间隔层中继电保护的提高

将双重化装置运用到变电站继电保护系统中,对后备保护进行集中配置,是做好间隔层继电保护,提高继电保护系统可靠性的有效措施。后备保护系统能为变电站后备设备、开关失灵及相邻范围内的线路和端母线提供保护,进而对电网系统运行中产生的故障和问题进行精确的诊断,并提供及时有效的解决办法。除此之外,可以在技术手段允许的情况下,将智能变电站的电压等级进行集中配置,使其适应电网运行的具体情况。同时,在对电网系统的具体情况进行分析后,可以预设出几套合理的运行方案,根据分析选出最适合并行之有效的方案,将智能变电站继电保护系统的功能发挥到最大。

3.4优化系统的冗余性设计

在继电保护过程中,系统冗余的优化能更大程度地避免系统错动和拒动问题的出现,进而促进系统的可靠性。继电保护系统的冗余性增强可以从以下两个方面着手:利用以太网交换机中的数据链路层技术实现变电站自动化实时监控;根据变电站网络架构的需求的不同,基于总线结构、环形结构和星型结构这3个基础网络结构的特点进行合理选择应用。总线结构可以有效地减少接线,但同时冗余性有待提高,在使用中对时间长度的要求较大;环形结构由于其环路上的任意点都能提供冗余,冗余性较好,但是收敛时间较长,对系统的重构影响较大;而星型结构的特点是等待时间短、没有冗余度,其可靠性比较低。针对3种结构的不同特点结合自身需求进行合理选择,才能提高变电站继电保护系统的可靠性。此外,在优化系统冗余设计时,应合理分析自己的投入率,在提高系统可靠性的同时注意经济效益的实现。

3.5优化线路保护配置与合理开展巡查检查工作

优化线路保护配置与合理开展巡查检查工作可以采取以下措施:针对线路保护配置工作,可采用集中式和后备式两种方式,相关人员通过对电压间隔单元的保护和通信系统的监控,可以及时地发现系统中产生的问题并解决,以提高智能电网系统运行的安全性和可靠性;在智能化的发展下,对人力资源的需求变小,但其仍是电力系统运行不可或缺的因素。在提升智能变电站继电保护系统可靠性的工作中,应注意巡查检查工作的开展,成立具有专业技能和职业素养的巡检工作小组,同时,制定完善的巡检制度和措施,将巡检工作落到实处,明确巡检人员的工作职责。实现巡检人员对智能变电站继电保护系统的全面巡检,及时发现并解决系统中可能出现的问题和故障,进而确保继电保护系统的可靠运行。

4结束语

总之,探究智能变电站继电保护可靠性不但对合理确定智能变电站继电保护配置方案有积极作用,还对整个电力系统的稳定安全运行有积极作用,而提升智能变电站继电保护可靠性的策略较多,在实践中应明确继电保护要点,从智能变电站实际保护需要出发,加强变压器的保护配置,实行电压限定延时保护,并注重落实线路保护配置工作,有效提升继电保护的可靠性,保证智能变电站与电力系统实现可持续发展。

参考文献:

[1]梁栋.智能变电站继电保护可靠性的探讨[J].科技传播,2015(20):63-64.

[2]胡詝峰.浅谈智能变电站继电保护技术的优化[J].科技创新与应用,2017(16):200.

[3]万林豪.智能变电站继电保护系统可靠性分析[J].科技与创新,2016(13):126+128.

论文作者:陈才广

论文发表刊物:《电力设备》2018年第9期

论文发表时间:2018/7/2

标签:;  ;  ;  ;  ;  ;  ;  ;  

智能变电站继电保护可靠性探究论文_陈才广
下载Doc文档

猜你喜欢