浅谈高中数学教学中的解题方法论文_谭雪燕

浅谈高中数学教学中的解题方法论文_谭雪燕

广西钦州市灵山县第二中学 535400

摘 要:针对高中数学教学过程中学生能听懂老师讲课但不会解题的现象,从审题和基础知识这两个方面分析了导致这一个现象的原因,并对这两个方面给出了建议。

关键词:审题 基础知识 解题方法

在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样,但没有做出来,或者考试时没有思路,老师在评讲时,一分析就知道如何解题”、“考试粗心”等。以上这些问题导致学生在考试中没有取得理想的成绩,对此问题,我不断思考,努力去寻找解决此问题的方法,最终得出结论:“这不是偶然,而是学生没有掌握高中数学的解题方法”。以下将从审题和基础知识这两个方面做深入的分析。

一、理解题目

著名数学教育家G·波利亚在《怎样解题》一书中,把数学解题分为四个步骤:(1)弄清问题;(2)拟定计划;(3)实施计划;(4)检验回顾。

而不少学生在这四个步骤中的“弄清问题”存在问题,对题目难以理解,导致解题困难。

1.审题时存在问题的原因主要有:

(1)肤浅阅读。读题时,就以读题而读题,只限于字认识,不会去思考、去挖掘题目条件暗含怎样的数学基础知识。

(2)心理障碍。当学生看到题目的文字多、关系式子较复杂,或者新题时,便会产生畏惧心理,变得紧张起来,在读题时就会出现读不懂,认为有一定难度,便选择放弃。

(3)节省时间。采用阅读的方式,加快读题的速度,争取更多解题时间,但往往适得其反,遇到不清楚的地方再重复读,导致没有思路,结果是更加浪费时间。

2.审题能力的培养:

(1)理解题目。学生首先要把题目读懂,能够把题中每一个条件经过转换、化简等方法把其隐藏的基础知识点挖掘出来。再根据条件逐一联想所学知识、方法、类似的题目、注意点和关键点。

期刊文章分类查询,尽在期刊图书馆这样才能发现题目中条件与结论的联系,从而逐步入题,找到解题的关键点、突破口。

(2)树立自信。帮助学生建立正确的人生观、世界观和价值观。遇到困难,相信自我,挑战困难,战胜困难,以提高他们勇于消除心理障碍、克服学习困难的心理素质。

(3)稳定沉着。读题时要慢、要细心,边读边想边理解,逐字逐句分析。若读一遍找不到解题思路,多读几遍,读清楚题目内容,会从题目中找到解题的思路。读懂题,理解题是解题的基础,然后在理解题意基础之上结合知识与技能联系题目相关的知识、方法,进而深入理解题目的本质,为下一步的解题做好基础准备。

二、理解概念,掌握基础

要想学好高中数学,必须先理解概念,就像设计师在设计房屋时,首先要知道什么是房子;同时数学基础知识是学好数学最基本的,就像建房子一样,房基就不可少,只有坚固的根基,你才能建设出更牢固、更有特色的房子,所以学好数学,理解概念,掌握数学基础知识是学好数学必不可少的要素,只有理解概念,掌握基础知识才能灵活运用。

理解概念,可以让学生感觉到学数学是轻松、容易的,学习数学离不开数学概念的学习,在数学中的概念是核心,把数学中各个知识点特有属性及之间的关系联系起来。在数学学习中,学生经常会遇到一些形似而质异的易混问题,如果概念不清,这样的题是非常容易错的。

例如,函数f(x)=x3-12x,求函数与x的交点,零点,极值点。

解答此题,首先要理解交点、零点和极值点的定义,方能解题。

(1)根据题意f(x)=x3-12x,x3-12x=0,x(x2-12x)=0,解得x1=0,x2=2和x3=-2所以函数f(x)=x3-12x的图象与x轴交点坐标(0,0),(2,0)和(-2,0)。

(2)函数f(x)=x3-12x的零点是0,2和-2。

(3)又因为f`(x)=3x2-12,3x2-12=0,解得x1=2或x2=-2;当f`(x)>0时,函数在区间(-∞,-2)、(2,+∞)上是单调递增函数;当f`(x)<0时,函数f(x)在区间(-2,2)上是单调递减函数,所以x=2是函数f(x)的极大值点,x=-2是函数f(x)的极小值点。

只有把数学基础知识正确地掌握好,才有可能做到思路清晰,条理分明,容易找到解决问题的突破口,顺利解题。而每一个题目都是由多个知识点综合而得,于是要解决它就必须掌握数学基础知识。

总之,想学好高中数学,必须具备较强的解题能力,掌握解题方法。审题是解题的前提,基础知识是解题的基础,在此基础上解决问题。只有掌握基础,才谈得上创新。在以后的教学中,加强培养学生的审题能力、理解能力,同时注重基础知识掌握和应用,让学生掌握解题的方法,对学习数学达到事半功倍的效果,爱学、乐学数学。

参考文献

[1]朱华伟 数学解题策略[J].科学出版社有限责任公司,2009。

[2][美]G.波利亚 数学思维的新方法[M].上海科技教育出版社,2007。

[3]陈晓敏 拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用[J].中学数学,2014,(5):14-16。

[4]潘文德. 以退为进灵活解题——浅析高中数学解题技巧[J].新课程学习:中,2014,(1):71-71。

论文作者:谭雪燕

论文发表刊物:《教育学》2017年6月总第121期

论文发表时间:2017/8/7

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈高中数学教学中的解题方法论文_谭雪燕
下载Doc文档

猜你喜欢