山东德建建筑科技股份有限公司 山东省德州市 253000
摘要:铝合金是工业中应用比较广泛的一类有色金属结构材料,在航空,航天,汽车,机械制造,船舶和化学领域都有广泛的应用。随着科技的进步和工业经济飞速的发展,对于铝合金焊接构件的需求日益增多,使得铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术成为了当今热门的研究方向。
关键词:铝 铝合金 焊接工艺 研究
铝合金由于重量轻,比强度高,耐腐性性能好,无磁性,成型好等诸多的特点被广泛的应用在各种焊接结果产品中。因此如何提高铝合金焊接的生存率和焊接质量,减少焊接缺陷存在的高效焊接方法成为了实际生产的迫切要求。
1铝合金的分类
铝合金可以分为变形铝合金(双分为非热处理强化铝合金、热处理强化铝合金两类)铸造铝合金。变形铝合金是指经不同的压力加工方法制成的板、带、管、型、条等半成品材料‘铸造铝合金以合金铸锭供应。’
2铝及铝合金的焊接特点
(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的 比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊 接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用 交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧 热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消 耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率 大的能源,有时也可采用预热等工艺措施。(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需 采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊 接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中 含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi 條(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成 氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。
期刊文章分类查询,尽在期刊图书馆因此,对氢的来源要严格 控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。
3铝合金的焊接难点
铝合金焊接有几大难点:
(1)铝合金焊接接头软化严重,强度系数低,这成为了阻碍铝合金应用的最大的障碍;(2)铝合金焊接容易产生气孔;(3)铝合金焊接易产生热裂纹;(4)铝合金表面容易产生难熔的氧化膜,这就需要采用大功率密度的焊接工艺。(5)铝合金膨胀系数大,易产生焊接变形;(6)铝合金热导率大(约为钢的4被),相同焊接速度小,热输入要比焊接钢材大2~4倍。
4铝合金的焊接工艺方法
几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其 各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊 条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG 或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄 板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护 焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)
4.1铝合金的钨极氩弧焊(TIG)
铝合金的钨极氩弧焊也可以称为钨极惰性气体保护电弧焊,是利用钨极与工件之间形成电弧产生的大量热量溶化待焊处,外加填充焊丝获得牢固的焊接接头。氩弧焊焊铝是利用其“阴极雾化”的特点,自行去除氧化膜。钨极及缝区域嘴中喷出的惰性气体屏蔽保护,防止焊缝区和周围空气的反应。
4.2铝合金的熔化氩弧焊(MIG)
铝合金的熔化极氩弧焊也称为熔化极惰性气体保护电弧焊,电弧是在惰性气体保护中的焊件和铝及铝合金焊丝之间形成,焊丝作为电极及填充金属。由于焊丝作为电极,可以采用高密度电流,因而母材熔深大,填充金属熔敷速度快,焊接生产率高。
4.3铝合金的激光焊
铝及铝合金激光焊接技术是近十年来发展比较快的技术,相对与传统的焊接工艺相比,它具有功能强,可靠性高,无需真空条件及效率高等特点。其功率密度大,热输入总量低,同等热输入量熔深大,热影响区小,焊接变形小,速度高,一遇工业自动化等特点,特别是对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光熔焊时形成深度的匙孔效应,则可以得到实现。
4.4铝合金的搅拌摩擦焊(FSW)
FSW是有锥形指棒伸入工件的焊缝处,通过搅拌头的高速旋转,使得与焊接工件材料摩擦,从而使连接部位的材料温度升高软化,同时对材料进行搅拌摩擦来完成焊接。
4.5铝合金的电子束焊接
电子束焊是指在真空环境下,利用汇聚的高速电子流轰击工件接缝处产生的热能,使被焊金属熔合的一种焊接方法。电子束作为焊接热源的突出特点是功率密度高,穿透能力强,精确,快速,可控,保护效果好。对于铝合金电子焊接,由于能力密度高可大大减小热影响区,提高焊接接头强度,避免热裂纹等缺陷的产生。由于能量密度高,穿透能力强可对难以焊接的铝合金厚板进行焊接。
结束语
铝加工产品应用广泛,建筑、汽车、高铁、飞机、电子等均用到铝材品种,市场存在很大的需求量。铝合金作为高性能轻型合金材料,将会是以后重点发展的新材料之一。另外近些年,“铝代铜”的现象出现也使得新型铝合金材料成为了新宠,随着相关行业的发展,铝合金材料的发展已经形成了一个产业链,轻量化等优点也将让铝合金材料越来越多的进入更多行业来代替以前的材料,相信日后的铝合金材料会有更大的发展空间。
参考文献
[1]尹士科.焊接材料手册[M].北京:中国标准出版社,2000.
[2]文申柳.金属材料焊接[M].北京:化学工业出版社,2008.
[3]关桥.刘方君.董春林.高能束流焊接技术的应用与发展趋势[C].第9次全国焊接会议论文集,1999.
论文作者:康荣军,李增胜
论文发表刊物:《建筑学研究前沿》2017年第24期
论文发表时间:2018/1/23
标签:铝合金论文; 焊丝论文; 材料论文; 方法论文; 电弧论文; 惰性气体论文; 熔池论文; 《建筑学研究前沿》2017年第24期论文;