中国船舶重工集团(天津)海上风电工程技术有限公司 天津 300450
摘要:随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。
关键词:海上;风力发电;关键技术
1我国风力发电技术发展所面临的障碍
1.1发电机组安全性能不足
即使风力发电技术在今年来备受国家和企业重视,然而在安全性能方面没有过多关注,无法保证发电机组的安全性与稳定性,甚至部分设备存在安全隐患。发电机组是风力发电系统重要组成部分,机组运行效率与安全稳定性直接关系到系统的运行效率。国家与电力企业对风力发电技术推广不到位,部分地区没有科学进行技术改革,导致发电机组缺乏安全性,经常出现机组事故,给风力发电系统带来不良影响,降低系统安全性与稳定性,不利于新能源产业的可持续发展。
1.2成本高且监管力度薄弱
经济是限制海上风电发展的重要原因,对比化石能源电力,海上风电的发电成本高,现在我国近海风电统一电价0.85元/千瓦时,一些海域预期投资收益不理想。海上风电对设备和施工技术要求严格,海上风电机组要克服台风、盐雾腐蚀问题,且施工需要专业施工队伍和施工船舶。除此,有的海上设施寿命短,以及停止使用后的拆除与续期的问题都不可避免。海底电缆审批和海域论证审批的分离加大了企业成本,事中事后监管不足,相关配套政策的缺失也加大了建设与运营维护的难度。
1.3风力发电的市场化水平低
风力发电虽然已经有一定的发展时期,但在和市场对接方面仍处于起步阶段,商品化程度依旧很低。风力发电在商品化这一方面仍需要长时间的发展,才能有一台完善的市场机制。相应的市场化人才也是不可或缺的,风力发电需要的商品化人才依旧处于空缺阶段。国家和社会仍需要投入大量的人力物力财力发展相配套的设施和人员。
2海上风力发电及其关键技术分析
2.1海上风力发电技术概述
与传统能源的开采利用相比,利用海上风力资源面临空前的技术难题,如:能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。
2.2关键技术
(1)海上风力发电机的选择
1)双馈式感应风力发电机双馈式感应风力发电机在海上风力发电站的应用最广泛,基本上普及了海上风力发电站。根据电刷和滑环调节转子电功率频率方式的不同,又可以分为有刷和无刷两种。2)永磁直驱式风力发电机永磁直驱式风力发电机组是目前海上风机发电的主要研究方向。它的涡轮机可以直接进行驱动,减少了齿轮箱环节,有效降低了发电机组运行过程中产生的噪音,且故障率较低,维护成本较低。永磁同步发电机直接与涡轮机连接,利用涡轮机的转化能力,将风能转化为机械能,然后利用永磁同步发电机将传递过来的机械能转化为交流电,并利用并网变频器实现对交流电的蒸馏、升压及逆变处理,最终得到三相电压频率恒定的交流电,并入到电网系统。
期刊文章分类查询,尽在期刊图书馆3)无铁芯电机随着科学技术的发展,无铁芯电机具有安装和运输成本低的优点,越来越多地应用到海上风力发电机组设计中。例如:通过定子和转子均无铁芯的辐条式结构设计,降低了电机重量,同时有效扩大了电机容量。
(2)完善风力产业结构
风力发电技术发展过程中,需要重视风力产业结构的科学与完善。近日,某智慧新能源企业开展“变频控制风力发电系统的拓扑结构”,项目结构简单,功能全面且造价成本低。企业研究部署海上风力发电产业建设工作,推动区域内产业结构调整和风能结构调整,技术人员实地调研生产车间与大数据中心。技术人员使用3MW风机在珠海进行台风测试,设备在每秒68.5m风速下依旧可以稳定运行,并利用台风中的风资源为企业提供额外发电量。例如电白黄岭风电场,与同兆瓦级风电场单机相比,电白黄岭的电机累计发电量高达78.6%,真正意义上实现了风力产业的高质量发展与绿色发展。
(3)桩基式基础技术原理及其应用
在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳定性和对施工地质条件、荷载变化规律的适应性。其中的导管架式基础由于良好的经济性和广泛的适用性而获得了较多应用,而多桩承台式基础在桥梁和码头的建设中有着广泛应用,因此在我国有着比较丰富的设计使用经验和施工技术资源,因此在国内的海上风力发电场建设中有所应用。
(4)加大对风力发电技术管理力度
为了提高风力发电机组的安全性能,保证电力设备的稳定性,降低安全隐患发生概率,需要加大对风力发电技术管理力度。注重对设备的安全检查,及时排除隐患,确保工作人员的行为符合安全标准。对风力发电技术相关设备定期检修,完善对零部件的故障检测,一旦发现问题及时处理。建议学习并借鉴国外先进风力发电技术,为我国风力发电机组的安全性能提供技术支持。优化风力发电机组装置结构,降低风力发电机组安装成本,推广风力发电技术技术,推动新能源产业发展。
(5)海上风电的并网技术
在海上进行风力发电过程中,受到环境、风速等因素的影响,造成发电的输出功率呈现浮动变化,具有随机波动性。当并入电力系统时,可能会导致电网频率出现偏差、电压波动、闪变等问题。现阶段,常采用的并网方式是MMC-HVDC并网方式,优点体现在以下几个方面。同两电平VSC-HVDC一样,具备可以对无源负载提供电能,可以进行有功和无功的独立调节功能;在MMC-HVDC中,可以随意调整MMC的子模块数量,系统的功率范围较大,可以实现高压大功率能量传输;在工程研发、建设以及运输过程中,消耗的时间较少且并网成本较低,并网稳定性较高;通过降低MMC-HVDC器件的开关频率,可以实现功耗的降低,有效提升并网的效率。
结语
在全球倡导低碳生活的大环境与我国海域面积广阔的前提下,对比与西方发达国家的海上风电发展现状,我国海上风电发展仍然存在着非常大的发展前景,如何实现低成本高效率、充分利用海上区域有不影响其他行业也自然的发展,值得我们深思。
参考文献
[1]许莉,李锋,彭洪兵.中国海上风电发展与环境问题研究[J].中国人口资源与环境,2015(S1):135-138.
[2]辛硕.海上风电基础型式与设计选型[J].科学与财富,2016(5).
论文作者:林亮,屈伟
论文发表刊物:《中国电业》2019年第09期
论文发表时间:2019/9/5
标签:海上论文; 风力发电论文; 风电论文; 风力论文; 基础论文; 技术论文; 永磁论文; 《中国电业》2019年第09期论文;