摘要:最近几年,伴随着社会经济的跨越式发展,人们的生活水平得到极大的提高,各类电器设备的普及和应用,使得社会对于电力系统供电质量和供电效率提出了更高的要求。为了满足电力市场发展需求,相关技术人员加大了对于电力系统自动化技术的研究力度,推动了电力系统自动化的发展
关键词:变电站自动化;智能化;结构;发展
1电力自动化的特点分析
1.1智能化
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
1.2网络化
变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的l/0现场接口,通过网络真正实现数据共享、资源共享,常规的功能装置在这里变成了逻辑的功能模块。
1.3自动化
变电站运行治理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。
2自动化系统控制技术分析
分层分布式自动化系统从软硬件上分层分级考虑了变电站的控制与防误操作,提高了变电站的可控性及控制与操作的可靠性。综合自动化站可采用远方、当地、就地三级控制,而常规站只能通过控制屏把手控制;常规站电气联锁设计联系复杂,在实际使用中,设备提供的接点有限且各电压等级间的联系很不方便,使得闭锁回路的设计出现多余闭锁及闭锁不到的情况。综合自动化站可方便地实现多级操作闭锁,可靠性高。常规站人是整个监控系统的核心,人的感官对信息的接受不可避免地存在误差,其结果就会导致错误的判断和处理。人接受信息的速度有一定限制,对于变化快的信息,有时来不及反应,可能导致不正确的处理。而且个人的文化水平、工作经验、责任心等因素都会影响信息的处理,可以说常规站人处理信息的准确性和可靠性是不高的。运行的实践证明,值班人员的误判断、误处理常有发生。综合自动化站的核心为系统监控主机,用成熟可靠的计算机系统实现整个变电站的控制与操作、数据采集与处理、运行监视、事件记录等功能,可靠性高且功能齐全。
3电力自动化的结构
3.1过程层
过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:①电力运行实时的电气量检测;②运行设备的状态参数检测;③操作控制的执行与驱动。
3.1.1 电力运行的实时电气量检测
与传统的功能一样,主要是电流、电压、相位以及谐波分量的检测,其他电气量如有功、无功、电能量可通过间隔层的设备运算得出。与常规方式相比所不同的是传统的电磁式电流互感器、电压互感器被光电电流互感器、光电电压互感器取代;采集传统模拟量被直接采集数字量所取代,这样做的优点是抗干扰性能强,绝缘和抗饱和特性好,开关装置实现了小型化、紧凑化。
期刊文章分类查询,尽在期刊图书馆
3.1.2 运行设备的状态参数在线检测与统计
变电站需要进行状态参数检测的设备主要有变压器、断路器、刀闸、母线、电容器、电抗器以及直流电源系统。在线检测的内容主要有温度、压力、密度、绝缘、机械特性以及工作状态等数据。
3.1.3 操作控制的执行与驱动
操作控制的执行与驱动包括变压器分接头调节控制,电容、电抗器投切控制,断路器、刀闸合分控制,直流电源充放电控制。过程层的控制执行与驱动大部分是被动的,即按上层控制指令而动作,比如接到间隔层保护装置的跳闸指令、电压无功控制的投切命令、对断路器的遥控开合命令等。在执行控制命令时具有智能性,能判别命令的真伪及其合理性,还能对即将进行的动作精度进行控制,能使断路器定相合闸,选相分闸,在选定的相角下实现断路器的关合和开断,要求操作时间限制在规定的参数内。又例如,对真空开关的同步操作要求能做到开关触头在零电压时关合,在零电流时分断等。
3.2间隔层
间隔层设备的主要功能是:①汇总本间隔过程层实时数据信息:②实施对一次设备保护控制功能;③实施本间隔操作闭锁功能;④实施操作同期及其他控制功能;⑤对数据采集、统计运算及控制命令的发出具有优先级别的控制;⑥承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工方式,以提高信息通道的冗余度,保证网络通信的可靠性。
3.3站控层
站控层的主要任务是:①通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;②按既定规约将有关数据信息送向调度或控制中心;③接收调度或控制中心有关控制命令并转间隔层、过程层执行;④具有在线可编程的全站操作闭锁控制功能;⑤具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;⑥具有对间隔层、过程层诸设备的在线维护、在线组态,在线修改参数的功能;⑦具有变电站故障自动分析和操作培训功能。
网络系统是数字化变电站自动化系统的命脉,它的可靠性与信息传输的快速性决定了系统的可用性。常规变电站自动化系统中单套保护装置的信息采集与保护算法的运行一般是在同一个CPU控制下进行的,使得同步采样、D转换,运算、输出控制命令整个流程快速,简捷,而全数字化的系统中信息的采样、保护算法与控制命令的形成是由网络上多个CPU协同完成的,如何控制好采样的同步和保护命令的快速输出是一个复杂问题,其最基本的条件是网络的适应性,要害技术是网络通信速度的提高和合适的通信协议的制定。假如采用通常的现场总线技术可能不能胜任数字化变电站自动化的技术要求。目前以太网(ethemet)异军突起,已经进入工业自动化过程控制领域,固化OSI七层协议,速率达到100MHz的嵌入式以太网控制与接口芯片已大量出现,数字化变电站自动化系统的两级网络全部采用100MHz以太网技术是可行的。
4变电站自动化技术发展趋势
随着集成电路和计算机技术的飞速发展,各种新型的大规模集成电路将会进一步应用在继电保护和测控装置上,如32位CPU、数字信号处理芯片DSP、高速数据采集系统、嵌人式实时操作系统、大容量Flash、可编程逻辑器件CPLD、FPGA等。这些新器件的应用将使保护和测控装置的电路板更加小型集成化,装置通信、数据存储及处理能力更强。将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能,通过模块化设计集成在—个统一的多功能数字装置内是可行的,间隔内部和间隔间以及间隔同站级问的通信可统一用一层网即光纤以太网来实现。高集成化系统的发展,无疑能降低成本,提高系统可靠性,有利于实现统一的运行管理。目前在许多中低压站已实现。
5结语
随着电力系统自动化的应用越来越广泛、深入,电力系统的安全、经济运行对自动化应用的依赖程度也越来越高。因此,依托更先进的自动化应用,来实现电力行业的供电可靠性及提高供电系统稳定性已成当下迫在眉睫之事。
参考文献:
[1]李隆娟. 浅谈电力系统自动化及其发展[J]. 中国新技术新产品, 2010(22): 158-159.
[2]马吉娜. 电力系统自动化的实现及其发展趋势分析[J]. 科技创新与应用, 2015(36): 213.
论文作者:郭建浩
论文发表刊物:《防护工程》2018年第35期
论文发表时间:2019/3/4
标签:变电站论文; 在线论文; 操作论文; 间隔论文; 设备论文; 常规论文; 装置论文; 《防护工程》2018年第35期论文;