摘要:电力行业中的电力系统已经基本能够实现自动化操作与控制,但与严格意义上的智能化还存在着一定的差异,电力行业的发展也受到不同程度的影响和制约。对此,将智能技术应用于电力系统自动化控制中,不仅能够提升电力系统自动化程度,更能使其向智能化方向发展和迈进。对于“电力系统自动化控制中的职能技术应用”的研究,就具有极大的现实意义。本文对解析电力系统自动化控制中的智能技术应用进行分析。
关键词:电力系统;自动化控制;智能技术
目前国内大量电气自动化设备的运行系统已经广泛应用到了人工智能先进技术,最基本的系统控制方法也主要以模糊控制、专家系统、神经网络控制等的应用为主,进而有效推动了电力系统自动化发展的历史进程,并且随着未来产业技术的不断革新,它们的技术关系在未来也势必会加紧密,故而为智能技术应用在电力系统自动化中提供了有利保障,使相关技术应用范畴会更加广泛。
1电力系统自动化中智能技术现状分析
对于电力系统而言,其主要就是一项相对庞杂、运行繁杂、危险系数大的巨维数动态式系统,其主要的特征体现在时变性与非线性。电力系统在自身运行的过程之中,会发生着诸多不可控参数与无法及时处理的动态化数据内容。然而,电力系统所涵盖的内容十分的宽泛,在这之中,电气元件与设备在自身运行的过程之中,出现延迟、饱和与磁滞的物理现象,正是因为这些现象,而直接性的影响到电气系统的控制,同时也会加大控制过程之中的难度。在现代化科学领域不断延伸与相互融合的背景下,科学技术也得到了很好的运用与发展,电力自动化控制系统及时的解决了电力系统之中所存在的各类问题。逐步的加大各个电压等级高压线路的数量,其所涵盖的范围十分的广泛,线路运行管理成本和难度也会随即极大,相应的就得要求电力系统自动化要不断的进行发展,将专家系统、智能监控技术与人工智能技术逐步的予以健全,最终在最大限度之上来有效的推动电力系统自动化的良性发展。
2智能技术在电力自动化控制系统中的应用研究
电力自动化控制系统中引入智能技术在目前看来其应用前景非常广,并且技术运用成果相对突出,其中本文以几种最为常见的典型技术对其进行了研究。
2.1模糊理论应用
模糊理论别名也称为集合理论,它主要利用语言变量和推理逻辑理论作为电力智能设施的实践基础。此外,运用模糊理论的电力自动化控制系统,能够具备体系完整的推理逻辑性,以及能够模拟人为决策等形式的模糊推理过程。而决定这一推理、逻辑过程的是其技术的数据规则控制。也就是说,应用模糊理论可以直观对模糊输入量进行推理,进而按照其程序的控制原则实现应有的模糊控制输出,而具体的输出成果则是模糊化、推理过程、推理判决。所以,电力自动化控制系统中如果通过模糊理论下的模糊量输出,能够将语言变量进行充分表达,进而实现类似于人的逻辑性能。此外,其鲁棒性也很强,能够使控制系统具备一定的自学、容错能力,即使系统内部出现因网络拓扑或者环境变量改变而引起的系统问题,凭借模糊理论的应用成果,也能够及时寻求出最为合理的解决途径。
2.2神经网络控制
神经网络控制最早在20世纪40年代初期,众多科研人员已经逐步神经网络控制来进行相关的研究工作。但是研究与开发神经网络控制,却无法在之后的一段时间取得很好的成绩,直到人们对于神经网络的实际需求与日俱增,才促使了该项研发项目重新的进入到人们的视野之中,并运用各类新型科技的运用,在神经网络控制层面,取得了傲人的成果,进而为后期神经网络控制的建立奠定了坚实的基础。
期刊文章分类查询,尽在期刊图书馆神经网络控制,主要就是充分的运用特定的方式,将庞杂的神经元来实施有效的连接,且神经网络具备特定、权重连接的信心,可以依据相关的学习算法来逐步的调整权重信息,进而完成了自m维空间中到n维空间中映射的目的,且该类神经网络形成的映射是相对繁杂的非线性映射。
2.3集成智能系统
对于集成智能系统而言,其不仅包括智能控制方法与智能系统,还涉及与电力自动化系统进行深入的交联。并且,此种集成智能系统是现阶段所应用到的较为先进与形成规模的控制形式。现阶段,电力自动化系统中所应用到的集成智能系统研发程度较低,但通过专家系统与神经网络相融合模式的提出,使得继承智能系统在研发上进入了全新的阶段,同时也为集成智能系统的进一步研发创造出众多可供参考和借鉴的内容。此外,随着智能技术在电力自动化系统中的深度融入,也使得对于集成智能系统的研发上升到全新的高度。此种全新的继承智能系统,即是将智能技术在电力自动化系统中所实现的功能予以融合,并采用可起到模M人类决策意识的模糊逻辑理论作为系统的基础架构,使得集成智能系统必将能够实现最大程度的智能化,使电力自动化系统得到更为完善的发展。
2.4专家系统的应用
专家系统控制在电力系统当中有着广泛的适用范围,比如对电力系统处于警告状态或是紧急状态进行辨识、进行紧急处理、系统恢复控制、状态分析、切负荷、状态转化、实现本电系统自动化、分析动态或静态、安全分析、控制电压的无功、培训调度员、人机接口以及隔离故障点等。虽然专家系统控制可广泛应用于电力系统的自动化过程当中,但其也存在很大的局限性,如其创造性较差,缺乏自主学习能力、分析能力、组织能力、应付能力以及深层适应能力,另外其浅层知识面较差。所以在对专家系统进行研究及开发时,要特别注意分析其效益及开发此系统所需要付出的代价,同时还要结合系统软件的有效性、试验、知识获取等问题进行全方位的考虑。
2.5线性最优控制
我国电力系统中,线性最优控制是应用范围最广、最有系统性、技术最成熟的一种控制理论,特别是在大型机组和水轮发电机自动控制系统中应用尤为广泛。线性最优控制最要是利用计算局部线性模型来实现的。但是电力系统有非线性特点,这就需要我们在实际运用中多加完善。电力系统规模大、远距离重负荷输电线能力受到电力系统阻尼不断减弱,卢强等人运用线性最优励磁控制手段来改善输电能力和电力稳定性的问题。线性励磁控制也从过去简单维护发电机端电压恒定发展到现在高精度电压调节,提高电力系统稳定。现在优励磁的控制方式是利用较为广泛也是较为普及的一种线性最优控制,现在大型机组直接利用最优励磁控制方式代替古典励磁方式。随着电力系统的不断发展,线性最优控制将会发挥越来越重要的作用。
结束语:
总而言之,在我们当今世界中,能源利用问题已经成为一个重要的问题,因为过快的经济发展,使得能源面临着使用危机,怎么才能够最大可能地利用能源,并且节约使用能源是一个重大问题。在电力系统中利用智能技术一方面可以提高电力系统的应用效率,另外一方面,也是最为重要的一方面,就是它可以帮助电力系统实现节约能源的效果。这也是为了满足我国对节约能源需求的必然趋势,在未来,对于电力系统智能化的发展也是提供了必要的条件。
参考文献:
[1]电力系统自动化控制中的智能技术应用探究[J].张五星.山东工业技术.2018(06)
[2]关于电力系统自动化中智能技术应用体系的分析[J].卢红.中国新技术新产品.2014(22)
[3]电力系统自动化控制中的智能技术应用探讨[J].郝忠孝.内燃机与配件.2018(01)
[4]电力系统自动化与智能技术应用分析[J].黄豪.科技创新与应用.2015(12)
论文作者:马骁
论文发表刊物:《电力设备》2018年第32期
论文发表时间:2019/5/17
标签:电力系统论文; 智能论文; 神经网络论文; 技术论文; 系统论文; 电力论文; 模糊论文; 《电力设备》2018年第32期论文;