摘要:变电运维对电力系统运行质量有着决定性影响,为此需要对变电进行实时监控,并引用先进技术保证监测质量。带电检测技术的应用对于变电运维工作有着重要影响,需要加强研究。
关键词:带电检测技术;变电运维;应用
1变电运维中带电检测技术优势
与传统在线监测技术有很大的不同,带电检测技术只在短时间内进行带电检测,因此能在设备运行时完成检测,无需停止设备运行。在变电运维工作中,带电检测技术主要具有以下优势:可实现不断电检测,不影响设备运行,避免由于设备停电造成的损失,保证供电可靠性与安全性;避免设备检测维修和运行间产生矛盾,即使在设备运行时也能及时排查、消除故障隐患,此外,因部分设备老化较为严重,所以进行高压测试时有可能发生故障,而带电检测则可以从根本上避免这一情况的发生;可将设备实际运行情况作为依据,对检测的时间进行灵活安排,既不会影响设备运行,又能及时发现和处理隐患。
2变电运维中常用的带电检测技术
2.1红外线检测技术
红外线检测技术主要应用于对设备测温。变电设备在运行过程中会因为某些原因局部温度升高过快,采用红外线成像技术进行检测可及时发现这一问题。但红外线自身的穿透能力较差,可能无法发现复杂电气设备内部的故障问题,对故障发生位置距离设备表面较远时,还需使用其他检测技术进行检查。
2.2暂态电压脉冲检测技术
在设备的局部放电过程中伴随着电磁波的产生,电磁波可以通过检测设备传导到地面,进而产生暂态电压脉冲。利用这种现象,采用专用检测仪器对变电设备进行带电检测,可以有效发现开关柜、配电网和环网柜等部分的故障问题。使用电压传感器捕获电压时间差,可以用来确定局部放电的具体发生位置,并对其放电强度和频率进行检测。通常放电位置间距越小,电压传感器采集到的暂态电压数值就越高,此外暂态地电压信号还与局部放电活跃程度有关。
2.3避雷器检测技术
避雷器检测技术一般被用于无间隙金属氧化物的避雷器带电检测,可以在避雷器运行过程中对其运行参数进行检测,及时掌握避雷器运行状况。在避雷器的运行参数中,总泄露电流值能够反映避雷器绝缘能力,阻性泄露电流值能够反映避雷器绝缘质量,因此掌握其运行参数可以确保避雷器的绝缘状态符合要求。避雷器的带电检测受多种影响因素干扰,为保证检测结果的准确性,需要采用补偿法对阻性泄露电流进行测量,抵抗外部干扰,为设备调试提供可靠参考。避雷器检测技术与红外检测数据的综合使用,还可以对设备内部受潮情况进行判断,如有必要,需要停电检修。
3变电带电检测技术应用实例分析
本次研究以某500kV变电站为例,对其变压器的内部缺陷进行带电检测。于2013年将变压器投入运行,在运行过程中技术人员需要依据相关技术要求对主变压器实施检测内容。在实际作业过程中,检测人员发现主变压器油箱出现了气体溶解的问题,监测数据也存在异常。本次检测内容详细如下:
3.1设备跟踪试验情况
通常情况下,为了保证变压器的运行状态良好,需在变压器投入运行的1d、4d、10d、30d进行检查,因为本次研究对象变电站中变压器出现了气体溶解现象,需对其运行参数进行监测,保证其运行状态良好。本次检测过程中,技术人员对某变压器进行检测时发现,1d检测数据没有发现异常,变压器运行良好,4d时发现油中溶解气体检测结果中三相本体油中存在C4H2。为了就部分C4H2的存在是否会对变压器设备运行造成影响,技术人员进行跟踪观测,并每日都详细记录检测数据,纳入工作日志。15d后,技术人员对绝缘油进行了色谱检测,检测结果详细如下:A相0.61υL/L、B相0.17υL/L、C相0.25υL/L。技术人员就检测结果绘制了曲线图,如图3、图4所示。由图3、图4可知,A相特征气体在15d左右的检测中其含量不断提高,B相气体趋于稳定,C相气体也逐渐在增长,但是增长速度缓慢。由此确定该主变压器运行中存在故障,会出现低能放电现象。为了保证电力系统整体运行稳定,需要对电力设备进行全面检查,加强对检测数据的分析研究,发现问题并及时解决问题。
3.2电气试验情况
(1)变压器铁心接地电路测试。在该检测内容实施过程中,为了给电力检测工作的开展提供有力条件,有效控制检测人员检测结果误差,需注重检测过程的控制。基于此,本次检测中技术人员给出的检测结果如下:A相11.1mA、B相11.1mA、C相13.5mA,均低于相关技术规定要求。
(2)局部放电测试。在正式开展该测试内容前,需要做好前期准备工作,备检测设备,主要有MICO-II超声定位仪、TWPD-2E多通道数字局部放电综合分析仪。另外,局部放电测试中,为了全面提升检测质量,技术人员需要发挥多种检测技术优势,综合采用脉冲电流法以及超声波检测法。在检测时,通过对宽频带电流互感器的合理使用,获得变压器铁心中脉冲电流信息数据,然后采用局部放电超声探测设备对变压器油箱壁局部放电进行超声检测,在该检测过程中需要做好定位工作。
(3)测试结果。对于上述测试内容,技术人员检测过程中均发现A相异常,放电数值约为150×104pC。
3.3铁心电位状态的局放检测
为了明确该主变压器的故障类型和故障原因,技术人员在检测之前经过试验分析会将故障原因确定为“铁心-夹件”的放电。但是为了对故障的深入了解,技术人员加强了对铁心部位的监测,尤其是电位状态参数的变化,在此基础上实现了放电状态的跟踪观察目标。铁心电位状态局部放电检测的工作原理是当铁心在安全电压下运行,电位状态出现变化时,变压器的放电状态也会随之变化,由此需对“铁心-夹件”的放电现象予以确认。另外,试验中,当变压器铁心对地电压为223V时,变压器的超声信号不断变强,提升幅度为5~10dB。技术人员依据该现象确认放电是在“铁心-夹件”之间发生的。造成该现象的原因有两方面:磁分路和铁心间距过短,且绝缘防护措施不到位;220kV的绕组端部的磁分路厚度不达标,安装时未对槽内间隙进行控制,引发积碳。
4结语
变电运维工作的深入开展,需要利用好带电检测技术所具有的各项优势,实现设备实时、动态检测,在第一时间掌握设备实际运行情况,做到尽早发现和处理故障隐患,进而从根本上保证电力系统安全、可靠运行。
参考文献:
[1]带电检测技术在配电设备检修中的应用探析[J].周旭峰.中国电业(技术版).2016(05)
[2]带电检测技术在变电运维中的应用分析[J].潘良,吴乐鹏,阳文.自动化应用.2017(11)
[3]浅谈带电检测技术在变电运维中的应用[J].向晓.电子测试.2017(21)
作者简介:
白宸瑞(1991.03-),女,山西太原人,武汉电气工程及其自动化本科,助理工程师,单位:国网山西省电力公司检修分公司,研究方向:变电运维,变电站值班员。
论文作者:白宸瑞
论文发表刊物:《电力设备》2018年第6期
论文发表时间:2018/6/21
标签:变压器论文; 检测技术论文; 设备论文; 避雷器论文; 铁心论文; 技术人员论文; 局部论文; 《电力设备》2018年第6期论文;