机载激光雷达技术在电力线路设计中的应用论文_范庆虎

机载激光雷达技术在电力线路设计中的应用论文_范庆虎

范庆虎

(国网电网公司青海省电力经济技术研究院 青海西宁 810000)

摘要:应用激光雷达技术进行数据采集,可加快电网设计的进度,同时使工程投资预算更加科学,该技术在我国电力线建设工程中将会得到越来越广泛的应用。本文首先对机载激光雷达技术做了概述,然后分析了机载激光雷达在电力线路设计方面的优势及应用,最后结合具体案例详细阐述了机载激光雷达技术在电力线路设计中的应用。

关键词:机载激光雷达;电力线路;设计;数据处理

一、机载激光雷达技术概述

机载激光雷达(Airborne Light Detection and Ranging,简称airborne LIDAR)技术集全球定位技术、惯性测量技术、激光扫描技术及高精度控制体系于一体,通过主动向目标发射激光快速获取目标的三维信息。它集中体现了激光测距技术、高精度动态载体姿态测量技术、高精度动态GPS 差分定位技术和计算机技术的迅速发展,是近十年来摄影测量与遥感领域革命性的成就之一,也是目前最先进的三维航空遥感技术。机载激光雷达系统源于1988-1993年间德国斯图加特大学将激光雷达测量技术与POS系统集成一体形成的空载激光雷达测量系统(Arkerman-19)。由于其能穿透植被叶冠、探测细小目标、可快速获取数据等特点,自上世纪90年代以来机载激光雷达技术迅速发展,目前世界上已有多个国家生产机载激光雷达设备,该技术的应用也越来越广泛。机载激光雷达技术在电力线路设计中的应用最近在我国电力建设过程中也呈渐长趋势。

二、机载激光雷达在电力线路设计方面的优势及应用

(一)优势

与传统摄影测量技术相比的优势:1)作业周期短,由于机载激光雷达技术不需要野外选择塔基点,极大地减少了野外控制测量及野外调绘的工作;2)能够直接获取目标的三维坐标,并可在数据成果中直接进行三维量测;3)用于电力线路优化设计的数据产品更加丰富,精度更高;4)优化线路路径,特别是可以精确的控制减少房屋跨越及房屋拆迁数量。

(二)应用

1、线路及立杆点的优化设计

通过对激光点云的处理可以得到高精度的DEM和DSM,在此基础上应用摄影测量软件对影像进行正射纠正,得到高几何分辨率的DOM。结合DSM和DOM可生成高分辨率的真实三维场景图,可以多视角地观看线路周围的地貌、地物等丰富的细节信息,通过放大、缩小、漫游还可以看到全线程的地形条件,可综合考虑沿线的交通运输、施工和运行维护的难易程度、对地物的影响及受地形的影响等,从而使设计的立杆点位、线路更合理更经济,对附近环境和居民的影响降低到最小。

2、估算需砍伐树木的面积

利用激光雷达点云完成地面滤波后,参考地面点按不同高度对植被进行分类处理,得到全线范围内的植被分布区域。

期刊文章分类查询,尽在期刊图书馆从植被分布区中可直观地判断需砍伐植被的位置,应用面积查询工具可估计需砍伐植被的面积,从而避免了不必要的植被砍伐,减少了建设输电线路对环境的破坏。

3、估算房屋拆迁数量及赔偿费用

房屋赔偿费用在输电线路建设成本中占有一部分比例,根据高分辨率的三维真实景观图,可清晰地查看设计线路走廊内房屋状况,包括房屋建筑结构、层数及占地面积,根据这些细节可准确地计算需拆迁房屋数量,估算赔偿费用,使输电线路建设成本预算更科学。

4、树高、房高测量

应用激光雷达的点云数据,可以方便快捷地测量设计线路走廊内植被的高度、房屋的高度等,避免了传统航测作业中由内业人员逐点进行立体量测的繁琐过程。

5、实时获取断面

利用LIDAR点云数据可以快速获取不同方向、不同深度的断面图,可方便地观看设计电力线与周围地物在空间上的关系,如交叉线路在高程上的差异、设计线路与走廊范围内植被的高差等,有利于设计线路及杆塔的高度。

结合DSM和DOM得到的真实三维场景与实际的地形、地貌和地物条件相差很小,最小在厘米级。利用三维真实场景图在室内选线不受视线范围的限制,大大减少了野外选线的工作量。

三、工程应用实例

(一)工程概况

针对某500kV变送电线路工程(线路长度约为130km)。除目的地变电站附近地形为平地外,其余为山地地形。植被以稀疏灌木林为主,局部间杂茂密,交通条件一般。

(二)激光测量系统检校

将机载激光测量系统安装到飞行器上后,首先必须进行系统检校,以获取相关参数,保证数据精度。包括激光扫描仪的检校和数码相机的检校,必须按照相关技术手册进行。

(三)地面GSP设基准站

激光飞行时需在地面布设GPS基准站,旨在航摄期间连续获取与机载GPS同步的观测数据,通过事后联合差分解算机载GPS轨迹。相邻基站间最大间距不得超过60km。

(四)实施航空摄影飞行

根据激光测量系统的检校参数,结合工程设计的航带,确定作业飞机的飞行参数及测量参数,选择合适的影像地面采样率、带宽和激光点间距等参数,实施航飞过程。

(五)数据处理

将机载激光扫描测量数据转化为线路勘测设计数据大致要经过下列几个步骤。

1、构建数字化立体作业平台

利用激光扫描测量系统所获取的DEM数据和正射影像数据,恢复测区立体模型,并在此基础上对线路路径进行优化。由于本系统所产生的三维立体模型是以正射影像数据为纹理、以实测的激光点云数据为基础建立起来的真三维实体,可以从不同角度对同一地方进行观察。因此,以此立体模型作为选线平台,可以大大提高选线结果的可信度和可靠性,使线路路径走向更加经济合理。

2、制作DEM、DSM和DOM

采用专业软件,导入激光点数据,设置分析参数,进行自动分类,区别地面、房屋、植被等,经分析对比,目前自动分类准确率仅为20%一30%。在此基础上采用人工干预方式结合影像进行精确分类,得到准确的数字高程模型和数字表面模型和房屋等信息。采用数码影像和精度更高的激光数据,经过纠正、镶嵌,可以获取比传统方法更加精确的正射影像图(DOM)。

3、制作平断面图

平断面图是输电线路测量的主要成果之一。平面图通过立体作业平台获取。在断面图绘制中,中线、边线断面及风偏危险点从DEM中自动提取。由于激光扫描测量系统所采集的点密度非常大,精度也较高,所含信息丰富,使得中线、边线断面可以同时获取DEM和DSM 2种数据,并且更加贴近真实地表,更好地服务于计算机的自动优化排位。在本工程中,我们将常规工程测量方法获取的数据、传统的航测摄影测量数据和激光扫描测量数据进行了比较,证明机载激光扫描测量数据是可靠的,其断面精度略高于普通航测断面精度。

4、绘制塔基地形图

从环境保护的角度考虑,在超高压、特高压输电线路勘测设计中杆塔位全方位高低腿已成必然趋势,因此结构专业对于塔基地形图测量的要求越来越高。目前条件下线路终勘的塔基地形图大都采用工测方法测量,占用了大量的人力和时间(50%一70%),不仅费时费力,而且点不容易测到位,内业处理工作量也较大。随着激光扫描测量技术的发展和成熟,精度越来越高,必将促进塔基地形图的数据采集和处理真正实现自动化。另外,激光点精度较高,点间距约2m,在特定区域进行土方量自动平衡计算,可得准确的土方量值。

结语

综上,激光雷达技术获取的信息丰富,能够很好地表现地形细节信息,在电力选线工程中有很大的应用优势,可提高电网设计的效率和科学性。随着算法的改进,激光雷达数据处理过程中的缺点会逐步得到改善,在电力选线工程中的应用必将越来越广泛。

参考文献

[1]王俊刚,李新科.机载激光雷达技术在电网工程建设中的应用[J]. 广东电力. 2009(09).

[2]黄家武.基于机载激光雷达数据的地形图成图技术浅析[J]. 红水河. 2009(05).

论文作者:范庆虎

论文发表刊物:《电力设备》2016年第9期

论文发表时间:2016/7/1

标签:;  ;  ;  ;  ;  ;  ;  ;  

机载激光雷达技术在电力线路设计中的应用论文_范庆虎
下载Doc文档

猜你喜欢