一、在数学教学中加强创新能力的培养(论文文献综述)
孙思思[1](2021)在《STEAM中Arts在中学数学教学中的应用现状调查及实践研究》文中研究表明STEAM教育指的是由科学,技术,工程,艺术,数学这五门学科构成的一个综合性的教育。STEAM教育是建立在STEM教育的基础上,而STEM教育又是在STS的基础上发展而来。本文在整个实践研究中运用文献研究方法,通过查阅国内外文献了解中国和国外STEAM教育的现状,今后的研究及发展趋势。挖掘出适合中学数学的教学方法,而且以南昌市某中学的部分师生作为此次研究对象,对他们发放问卷进行调查,并做半标准式的谈话访问,整理分析调查数据,了解在数学教学中STEAM中艺术的融入情况。根据调查结果分析,老师在课堂中对艺术教育的渗透还不能满足学生的对艺术教育的需求,所以本文以实际情况为基础,在教学中开展艺术教育。笔者在一个班的数学教学中渗透艺术教育,而在另一个班进行常规教学。分析对比两个班教学后的成绩,并且用SPSS22.0软件分析数据可知,在两个班学习基础相同的前提下,渗透了艺术教育的实验班的学习成绩要明显高于参照班的成绩。本研究在STEAM教学理论前提下,以教材和教学为出发点,提炼出其中的的艺术成分。通过实证研究发现,艺术教育在数学中的渗透,不但培养了学生认知美、感受美的能力,而且他们的学习兴趣有所提升,有利于取得一个良好的学习成绩。同时对数学学科的发展也有促进作用。为以后其他学科的STEAM教学有参考价值。
李兆敏[2](2021)在《“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例》文中提出“课程思政”要构建“三全”育人格局,即各类课程落实立德树人的任务要与思想政治课程同向同行,协同共育全面发展的社会主义合格接班人和可靠建设者,实现对新一代青年价值塑造、知识传授和能力培养,其中数学课程责无旁贷。参加雄安新区支教时,发现高中美术生的教育存在专业知识和思想政治教育结合力度不够的现象,针对问题,采用文献分析法、问卷调查法,了解到当前美术生迷茫困惑状态明显、是非辨别能力薄弱、价值观念不成熟的特点突出,在美术生价值塑造黄金时段,探索将价值观教育寓于专业课教学中,实现全方位育人,已成为教育改革的重要研究课题。通过对美术生思想情况的调查,总结出美术生在人生规划、爱国表现、价值取向、思想特点、思政教育获得方式五个方面的表现,在此基础上确立“课程思政”切入点理论模型。切入点理论模型从辩证唯物主义观教育、爱国情怀教育、科学人文素养教育、创新思维教育和生态文明观教育五个维度的内容展开,并指导完成以“不等式”相关内容为例的教学设计、实践与评价。研究表明:在课程思政教学设计原则指导下,基于已有教学设计模型和优秀案例总结构建了课程思政数学教学设计的流程,包括课程思政切入点规划、教学要素分析、教学实施设计和教学评价设计四个环节。区别于传统教学设计模型,课程思政契入点模型贯穿于整个数学教学设计,目标设计增设了课程思政目标,效果评价规避了成绩衡量能力的片面性,从成绩、意识、观念、行动进行综合考量,通过实践与反思不断优化教学设计。实现课程思政在数学教学资源上的拓展,在教学评价上的突破,在实践中取得阶段性的研究成果。研究得到的教学策略,从语言、资源、价值、意识、能力五个层面进一步指导课程思政在其他数学内容的实践。语言层面强调契合新时代美术生的用语方式,资源包含课程内外思政元素和时代发展典型案例,价值层面注重于对学生三观的影响,实现塑智塑魂塑价值观的育人追求,意识着眼于国家人才发展需要的创新意识,并树立环保意识,能力层面把课程思政落实到提高学生综合能力。
杨雨桐[3](2021)在《高中生数学逆向思维能力的现状调查研究与决策》文中研究说明党的十八大以来,习近平总书记将创新摆在国家发展全局的核心位置。科技的发展、社会的进步都要靠不断的创新。而逆向思维则是创新思维的重要组成部分,是创新思维训练的载体,因此在数学教学中就必须要加强对学生逆向思维能力的培养,培养学生的逆向思维能力可以提高学生思维的灵活性、发散性,帮助学生转换思路,从多角度看待问题、解决问题。这对于发展学生的创新思维有很大帮助。高中阶段是学生思维发展的重要阶段,如果教师能够在这一时期抓住机会培养学生的逆向思维,那对于学生未来创新能力的发展将会有很大帮助。因此本课题的研究具有重要的理论与实践意义。为帮助高中数学教师有针对性的加强对学生数学逆向思维能力的培养,笔者采用文献法、访谈法、测试卷法进行研究。通过测试卷,调查了学生具体数学逆向思维解题方法的运用情况并在测试后结合测试结果对学生进行随机访谈;通过教师访谈,调查了教师对于逆向思维培养的看法、教学方式的选择、思维培养的困境等问题。调查发现当前在数学逆向思维培养的过程中存在着课堂教学形式单一、教学评价方式单一、学生思维定势严重、对问题思考度不足、概括反思能力较差以及学生学习信心不足等问题。针对学生数学逆向思维能力的现状调查与研究,笔者提出了提高教师自身素养和在课堂中通过对数学概念、数学定理、数学公式、数学方法的教学加强学生数学逆向思维能力培养的建议,以供一线教师参考。
郑云端[4](2021)在《体验教学在小学高年级“图形与几何”教学中的应用现状研究 ——以扬州市H小学为例》文中研究表明体验教学就是以体验作为师生互动的方式,教师在一定的教学理论的指导下创设一定的教学情境,激发学生的学习情感,学生在亲身经历与感知体验的过程中自主获取知识、生成情感与建构意义。体验教学是小学数学课程改革所要求的教学方式,并且体验教学关注的是小学生在数学课堂中的探究、实践及操作过程,教学内容符合小学生的现有水平,与小学生的生活经验息息相关。然而,数学课本中的“图形与几何”知识都是具有抽象性的,是对生活经验的概括与总结,这就表明将体验教学应用于小学数学“图形与几何”教学中是能发挥积极作用的,既发展了小学生的空间观念与几何直观,又提高了小学生的数学推理能力,数学课堂因为加入体验而变得更加精彩。目前关于体验教学在小学高年级“图形与几何”教学中的应用现状研究主要局限于教学实录与反思,因此本研究选取小学高年级的教师和学生为研究对象,试图通过多方面的调查寻找出扬州市H小学的教师将体验教学应用于“图形与几何”教学时存在的问题,进而分析问题背后产生的原因,最后从全局的角度提出切实有效的改进策略。本研究采用问卷调查、教师与学生访谈和课堂观察这三种研究方法,围绕教师对体验教学内涵与在“图形与几何”教学中应用意义的理解、体验教学目标的设计、体验教学资源的开发、体验教学方式的选用、体验教学效果的评价这五个方面的内容进行了相关教学现状的调查。通过调查发现体验教学在小学高年级“图形与几何”教学中应用存在的主要问题有:教师对体验教学价值的理解偏重于几何知识与空间观念的习得、体验教学目标的设计对学生学情与情感目标的重视不够、体验教学资源的开发缺少实际生活中“图形与几何”资源的利用、体验教学方式的选用缺少多样性与丰富性、体验教学效果的评价缺少带有激励性的情感评价。产生这些问题的原因主要有数学教学的应试性使课堂活跃度不够、学时的限制使体验效果与预期有差异、少数学生参与体验活动缺乏主动性。针对这些问题提出五点改进策略,分别是:教师要加强对体验教学理念的学习与研究;体验教学目标的设计要注重以情促知;体验教学资源的运用要体现生活化与多样化;体验教学方式的选用要创设多种主体亲历的体验活动;体验教学效果的评价要注重学生的情感发展。
刘俊含[5](2021)在《融合STEM教育的高中数学活动教学研究》文中提出STEM教育是在信息化时代的高速发展和社会对创新型人才的迫切需求下诞生和发展的。STEM教育作为一种以在实践中培养学生用跨学科知识与技能解决现实问题为目标的教育,最终目标是实现创新人才的高质量培养。我国新一轮高中数学课程改革是以提升学生数学应用能力、实践能力,培养全面发展的、能够满足社会发展需要的人才为导向的教学实践。新版高中数学课标也明确,数学教学要符合学生的个性发展并最终促进学生的全面发展。本文结合相关文献梳理分析STEM教育、活动教学的产生发展与研究现状。在国内外文献的基础上,探讨STEM教育的内涵、STEM教育与高中数学活动教学相融合的可行性。在“从做中学”理论、情境学习理论、赛耶模型和PBL学习模式的指导下,参考STEM教育在高中数学教材与教学中的现状分析结果,构建融合STEM教育的高中数学活动教学模型,讨论其对于转变高中数学课堂教学模式以及发展学生跨学科综合素养的有效性,这也是文章的创新点。将本研究提出的融合STEM教育的高中数学活动教学模型与Ge Geobra计算机平台共同应用于具体教学实践,促进数学知识的应用广度,转变师生数学教与学的方式。本文的研究方法是实验研究法、文献分析法、访谈法及问卷调查法。利用设计的教学案例进行教学实验后,将对照班和实验班学生的后测成绩对比,综合师生访谈情况,初步得出以下结论:基于数学课堂构建的融合STEM教育的高中数学活动教学模型,有助于转变现有高中数学课堂的教学模式,从而进一步提升学生应用数学解决现实生活中的问题的能力。通过对师生的访谈发现,该教学模型对于提高学生活动参与度、增强学生数学学习兴趣、促进学生跨学科知识运用水平等具有一定作用,并可为一线数学教师的STEM教学提供一定参考。本研究尚处于初期阶段,该教学模型的教学实践仍需进一步研究和完善,对于STEM教育与数学相融合的探索还将继续。
孙贺[6](2021)在《课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例》文中指出“课程思政”对于落实立德树人根本任务,发挥好每门课程的育人功能,构建全员全程全方位育人格局,培养德智体美劳全面发展的社会主义建设者和接班人具有重要的作用。以高中“函数模型的应用”专题的教学内容为例,探索专题教学中融入课程思政的问题。在文献研究基础上,在数学教学中落实课程思政的目标,划分维度为数学品格、文化素养和价值理念三个一级指标,在每个一级指标下又设置四个二级指标;编制学生调查问卷、教师访谈提纲,对课程思政在高中数学课程中的实施情况展开调查;完成课程思政视域下的“函数模型的应用”专题教学设计与实践,分析对数学学习成绩的影响,并提出教学建议。研究表明:(1)编制的调查问卷折半信度、内容效度以及结构效度较好,可作为测量高中数学教学融入课程思政水平的调查工具;(2)实验班和对照班的学习成绩不存在显着性差异,即教学中落实课程思政目标不会对学生成绩产生消极影响;(3)参与教学实践的学生数学品格、文化素养、价值理念三个一级维度的水平均有所提升,其中数学品格的提升效果最明显,文化素养、价值引领的显着性效果依次减弱,育人效果得以彰显。践行课程思政理念,数学教学应做好以下工作:(1)丰富课程思政交流形式,提升教师思政育人意识;(2)以数学为基点联系社会热点,拓宽教师思政储备;(3)分阶段制定思政育人目标,学科间共享思政成果;(4)利用信息技术创新课堂形式,于互动中达到育人实效;(5)弘扬优秀文化与先进事迹,营造良好思政环境;(6)质性评价与定量评价相结合,细化思政考核方式。
余江燕[7](2021)在《高中函数教学中数学逆向思维能力培养的调查研究》文中指出随着时代的不断进步,社会对创新型人才的需求逐渐增加,如何提升创新能力、培养创新型人才已经成为新时代国内外广泛关注的课题。提升创新能力,关键是要形成创新思维,而逆向思维作为创新思维的一种,在生产生活的各个领域中发挥着重要的作用。函数作为高中数学知识的主要内容之一,贯穿于高中数学课程的始终,蕴含着许多正逆之间的转换,因此,在高中函数教学中培养学生的数学逆向思维能力是有必要的,这有利于学生深入理解函数的本质,增强思维的灵活性。我国关于逆向思维及函数教学的研究逐年增加,但对学生逆向思维能力与函数教学的相关研究较少。因此,在已有研究的基础上,试图对高中生函数内容中数学逆向思维能力的培养现状展开测查,主要完成了如下任务:首先,整理分析国内外思维、逆向思维、数学逆向思维、函数教学相关文献,探讨总结出适合本研究的数学逆向思维相关概念。其次,对人教A版高中数学教材函数内容进行梳理统计,根据梳理内容结合已有相关研究编制师生调查问卷及测试卷,对K市两所高中各两个高二理科班的学生(共190名)及50名教师展开调查,分析学生数学逆向思维能力的培养现状及影响因素。最后,根据调查结果分析和相关理论研究,提出高中函数教学中数学逆向思维能力培养的建议。主要得出以下结论:(1)学生数学逆向思维能力的培养现状:学生在函数内容中的数学逆向思维能力处于中等或中等偏下水平。不同班级层次的学生之间数学逆向思维能力存在显着性差异,重点班优于普通班;不同性别的学生之间数学逆向思维能力不存在显着性差异。此外,数学逆向思维能力与学生的数学平时成绩呈显着正相关。对于在高中函数教学中培养学生的数学逆向思维能力,从认知情况来看,教师及学生总体上较为了解,并肯定数学逆向思维对学生个人发展的作用;从培养态度来看,教师及学生总体上均赞成在高中函数内容中培养学生的数学逆向思维能力;从培养方法来看,教师及学生普遍认同引导探究的教学模式,一题多解、变式训练、设计开放性题目等教学方法适合于培养数学逆向思维能力。(2)影响学生数学逆向思维能力发展的因素:通过对学生测试卷及师生问卷结果分析,结合访谈,得出影响学生数学逆向思维能力的主要因素包括学生思维能力、教师教学观念及能力、教学模式。(3)高中函数教学中逆向思维能力的培养建议:转变教师教学观念,提高教学能力;创设逆向情境,营造良好的学习氛围;在解题反思中提升数学逆向思维能力。
孙丹丹[8](2021)在《基于数学史网络研修的在职初中数学教师观念发展研究》文中进行了进一步梳理该研究是一项在数学教育中运用数学史的实证研究,关注数学史研修对在职初中教师数学观及数学教学观的影响。为此,研究者设计实施了一项旨在发展在职初中数学教师观念的基于数学史的网络研修项目,共持续一年,包含九个主题的数学史学习及教学研讨,研究致力于分析:参与研修项目的教师的数学观和数学教学观是否有转变?如果有:(1a)教师数学观内容有何转变?(1b)教师数学观持有方式有何转变?(2a)教师数学教学观内容有何转变?(2b)教师数学教学观持有方式有何转变?(3)教师的数学观和数学教学观转变有何联系?这些转变与数学史有怎样的联系?研究收集了教师数学观及数学教学观前后测李克特问卷、数学观及数学教学观前后测开放性问卷、9个研修主题的反思单及若干教师的反思单追踪访谈、个案教师教学设计、个案教师半结构化访谈等数据,综合教师总体与教师个案两个层面来分析问题1教师数学观的变化及问题2教师数学教学观的变化,总体层面的分析可以发现教师观念转变趋势,个体层面的分析有助于深入转变细节,问题3数学史、数学观及数学教学观转变关系的探索依赖于具体情境,因此仅在个案层面回答。研究采用混合研究法分析教师总体观念转变,采用案例研究法分析教师个体观念转变。研究发现,教师数学观表现出更支持柏拉图主义和问题解决观、更否定工具主义观的趋势,教师数学教学观表现出更支持强调理解及学生中心、更否定强调表现的趋势。具体而言,教师数学观内容的转变体现在:持有更加动态的数学观;倾向认为数学思维的应用也是一种数学应用;否定数学是不相关的事实规则集合。教师数学观持有方式转变体现在阐释性、例证性、论证性、一致性的增强。教师数学教学观内容转变体现在:深化“双基”目标;重视情意及观念目标的培养;尊重及重视学生的想法;关注学生的主动参与及思考;补充调整教科书。教师数学教学观持有方式转变体现在:例示性、论证性、执行性及联结性增强,冲突性减弱。研究从数学史(横向枚举史、纵向演进史)和HPM课例实施及观摩两方面阐述了数学史网络研修对数学教师观念的影响路径。本研究理论创新在于综合信念内容及信念持有方式两个视角来探索数学史对数学教师观念系统的影响,关注了已有数学史与数学教育研究较少关注的数学教学信念,同时讨论了数学观与数学教学观之间的联系。实践创新在于设计了可推广的指向在职初中数学教师观念发展的教师教育项目,借助网络研修拓广了以数学史促进教师专业发展的辐射面,为开展“互联网+教师教育”提供参考原型。
石迎春[9](2021)在《小学数学“有过程的归纳教学”模式建构》文中研究指明当前教育教学中存在两个突出的问题,一是缺乏“过程”的教育,具有极强的“结果导向”;二是对“归纳教学”重视不够,忽视从个别到一般的归纳学习。小学数学学科,学习内容具有“先验性、抽象性”,儿童掌握这种先于经验、脱离具体情境、经过多次抽象之后的知识存在一定的难度,儿童学习的心理机制要求儿童在数学的学习过程中应浓缩再现人类数学发展的过程,要经历动手操作、实践探索,要亲历知识的再创造、再发现的过程。“有过程的归纳教学”作为一种教学理念和方式,旨在回应上述的诉求,变革儿童的学习方式、促进儿童知识的理解与智慧的生成。“有过程的归纳教学”已对当前教育教学改革产生了重大的影响,而如何更好地在教学中进行实践成为了教育界关注的重点问题。本研究立足实际,以小学数学学科为例,以归纳性教学理论的生成路径为指引,从“宏观的理论阐释——中观的模式建构——微观的教学实践”三个层面对“有过程的归纳教学”做纵深的探查与研究。以“设计本位”研究为研究范式,构建小学数学“有过程的归纳教学”的教学模式,探寻教学的设计与实施策略。本研究围绕三个研究问题:1.什么是“有过程的归纳教学”?2.小学数学“有过程的归纳教学”的模式原型是什么?3.如何修订和完善小学数学“有过程的归纳教学”的模式原型?具体展开了三个方面的工作。首先,本研究从理论和现实两个维度,对“有过程的归纳教学”的立论基础进行分析,并基于对国内外关于“过程及过程教学”“归纳及归纳教学”文献的分析,在结合专家访谈的基础上对“有过程的归纳教学”的内涵、典型特征及其条件系统进行了阐述。之后以设计本位研究为研究范式,通过三轮的教学迭代对“有过程的归纳教学”的理论进行了回应,并对典型特征及其实现条件进行了完善。其次,本研究以“有过程的归纳教学”的理论为指引,利用视频图像分析法对小学数学10节典型的“关注过程、注重归纳”的教学课例的典型特征进行了分析,并得到了“注重过程的归纳式教学”课堂样态是怎样的,之后确定了“有过程的归纳教学”模式原型建构的五个核心要素:“类特征”的学习主题、“挑战性”的问题情境、“探究性”的操作活动、“贯穿性”的归纳建构、“嵌入式”的学习评价,并以上述研究为基础初步构建了小学数学“有过程的归纳教学”的教学模式(Mode of Procedural Inductive Teaching,以下简称“P-I”教学模式)原型,并从指导思想、功能目标、操作流程和实现条件四个方面对该教学模式进行了详细的阐述。初步构建的“P-I”教学模式具体的操作流程主要有:确立学习目标——设置问题情境——探索新知、建构意义——归纳新知——应用巩固这五个环节。最后,将“P-I”教学模式的原型与小学数学学科的典型案例结合进行具象化,展开了三轮的教学迭代。一方面是将教学理念转化成了实践,另一方面是对教学模式进行检验和修正,同时也对“有过程的归纳教学”的意义、价值、内涵等进行回应。第一轮教学研究是尝试和探索阶段,按照之前构建的教学模式进行教学设计和实施,主要是从宏观的角度对有过程的归纳教学的各个要素进行整体的考察。通过第一轮的教学实践,本研究对“P-I”教学模式原型的操作流程进行了优化,并结合具体的教学内容设计了“P-I”教学模式的变式。第二轮是调整和改进的阶段,在第一轮的行动研究的基础上,对“P-I”教学模式进行中观的调整。进一步将教学模式的原型及其变式的操作流程进行优化,并增加了“P-I”教学模式的师生行为指南。第三轮是提升和应用的阶段,主要是从微观的角度,对教学模式的细节进行打造,最终将教学模式的操作流程优化为:“确立学习目标”、“创设问题情境”、“探索新知、建构意义”、“回顾反思”、“应用巩固,拓展延伸”五个环节,并将学生的学习评价嵌入到整个模式之中。至此,经过三轮的教学迭代,本研究构建了与“有过程的归纳教学”相互匹配的适合小学数学教学的“P-I”教学模式原型、变式及其师生行为指南。本研究最终构建了小学数学“有过程的归纳教学”的教学模式(“P-I”教学模式)。该教学模式的创新性主要体现在:1.立足我国当前教育教学存在的问题,以设计本位研究为研究范式,尝试给出来自实践的探索;2.“P-I”教学模式很好地将“过程教育”与“归纳教学”思想结合起来;3.将“P-I”教学模式做变式的处理,以此来增加模式的灵活性;4.将学生的学习评价嵌入到整个模式之中。另外,本研究在教学实践研究中,对“有过程的归纳教学”的设计与实施策略进行了提炼。“有过程的归纳教学”的设计策略主要有:“聚焦‘核心内容’,确定类特征学习主题”“整体分析学习内容、把握知识本质”“剖析学生前概念、定位学习起点”“形成以‘单元’为单位的教学设计”。“有过程的归纳教学”的实施策略主要有:“创建课堂学习共同体,实现多种形式的对话”“经历多种思维的沉思,实现新知的归纳”“对归纳的结论进行辨思,处理好‘或然与必然’的关系”“介入真实情境和任务,实行多元性教育评价”。
彭艳贵[10](2020)在《核心素养背景下的高中复数内容与学生理解的若干相关问题探究》文中研究指明数学核心素养是新一轮高中数学课程标准修订的核心内容,既与个体发展的培养目标紧密关联,又是高中数学课程发展的方向。按照核心素养理念,在高中数学课程中,应该以学生发展为根本,培育学生的科学精神和创新意识,培养学生的必备品格和关键能力。高中阶段的复数关联着代数、平面几何、三角函数等多个知识主题,表现出广泛的联系性,在核心素养理念下,高中复数的学习对于学生的知识理解和个体发展都是重要的。在历年的高中数学课程修订的过程中,复数虽然一直被认为是高中数学课程中的基本部分,但它的内容体系从建国以来就表现出一定的波动性,反映了人们对高中复数的价值取向和课程发展的思考过程。在近些年的高中数学课程发展中,随着复数部分的删减,复数成为“容易教的难点课”,教起来简单,但学生对于基本概念的理解却存在明显的问题。课程发展理论的基本观点认为,教育是一种改变人们行为模式的过程,对学习者本身的研究是教育目标的基本来源。课程内容是构成课程的基本要素,着眼于促进学生发展的教育目标,基于学生的复数理解水平和行为表现的研究,对高中复数课程内容进行分析和讨论,是对当前高中复数课程研究的深入发展。因此,本文开展如下四个方面的研究。第一,基于核心素养理念,从学生个体发展需求、数学的教育功能和高中数学课程的基本要求三个方面确立高中复数教育价值的判断依据,从理论上初步讨论高中复数的教育价值。高中复数学习对学生的核心素养发展、知识结构发展、数学观念变化、思维品质提升、渗透数学应用意识和完善人才培养过程六个方面表现出重要的价值。高中复数教育价值的理论分析为后续研究奠定了必要的理论基础。第二,本研究从课程文本方面对我国历年十一个版本普通高中数学教学大纲或课程标准中的复数部分从课时数量、课程内容和教学目标三个方面进行了纵向的比较,历年的复数课程虽然在这三个方面存在一定的变化和波动,但都对复数作为“数”的概念的发展进行明确,表现了对数系扩充的目标要求,对复数的表示、复数的运算也都提出了相对较高的教学要求。研究中还对国际上基础教育比较发达的中国、美国、新加坡、英国和澳大利亚五个国家的高中数学课程标准中复数部分进行横向比较,分析不同国家高中复数的课程目标,了解各个国家的高中复数的基本目标情况,为我国高中复数课程发展提供参考。第三,作为进一步的实践求证,研究中在理论上分析和构建了高中生复数理解水平的框架,明确高中复数理解的四个水平:感知水平、表征水平、联结水平和应用水平。以此为基础,在专家的指导下,结合当前的教学实践,编制了高中生复数理解水平测试卷,选择合适的研究样本进行调查测试,并对结果进行分析。测试结果表明,多数学生在高中生复数理解的感知水平和表征水平上表现较好,可以较自如地处理一些常规的复数问题,对于一些知识的记忆和方法的基本应用表现较好。但在高中复数的关联水平和应用水平上,学生的测试表现相对较弱。由于多方面因素的影响,不同类型学校的学生也表现出一定的差异。学生在复数问题解决的表现中,能够识记基本的结论,但在稍微复杂的问题中缺少必要的判断,在复数问题求解的思维表现上比较普通,在需要较高数学能力的问题上表现不足,对于复数几何意义这个重要内容的理解不够完善,对虚数单位i等复数基本概念和运算法则也缺少必要的理解,在处理联系其它知识主题内容的复数问题时也较普遍地存在困难。第四,本研究根据理论分析和实践研究的结果,整理了高中复数的基本内容,构建高中复数的基本框架,结合高中数学核心素养的理念,提出高中复数课程及其内容的发展的基本主张。在高中数学知识体系中,应该坚定复数课程的基本地位,为了充分体现高中复数的教育价值,应该关注高中复数知识体系的相对完整性,重视高中复数的核心概念,丰富复数几何意义和复数与方程等与复数发展密切相关的内容,同时也应该关注复数的广泛关联性和历史文化价值。本文的研究内容和结果具有以下几个方面的创新性体现:创新性之一,当前关于高中阶段复数内容的研究整体不多,且较集中于高中复数教学设计的研究。本文以已有研究为基础,从理论分析、课程文本比较、复数学习评价、复数课程内容分析等方面进行了较为系统的研究,对相关研究起到了必要的补充作用;创新性之二,教育的根本目的是改变学生的行为,因此,基于学生发展的需求考虑,尤其是基本的知识需求方面,研究中对学生的复数理解水平进行测试,对学生的典型表现进行分析,讨论影响学生高中复数理解水平的知识方面因素。在研究思路、研究方法和研究结果等方面均表现出较好地探索意义;创新性之三,本文经过较为系统的研究,采用特定的方法对高中复数相关的具体问题进行分析,相关结论为高中复数课程改革提供了较为直接的依据,而不仅仅是依赖于经验。
二、在数学教学中加强创新能力的培养(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、在数学教学中加强创新能力的培养(论文提纲范文)
(1)STEAM中Arts在中学数学教学中的应用现状调查及实践研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究目的及意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国外STEAM教育理念的研究现状 |
1.3.2 国内STEAM教育理念的研究现状 |
1.4 相关概念的界定 |
1.4.1 STEAM教育的起源 |
1.4.2 STEAM教育理念的内涵 |
1.4.3 ARTS的概念及特点 |
第二章 ARTS在中学数学教材中的体现 |
2.1 数学教学中的逻辑艺术 |
2.2 数学教学中的图形艺术 |
2.2.1 图形艺术的对称美 |
2.2.2 图形艺术的和谐美 |
2.2.3 图形艺术的奇异美 |
2.3 数学教学中的导入艺术 |
2.3.1 直观导入艺术 |
2.3.2 故事导入艺术 |
2.3.3 事例导入艺术 |
2.4 数学教学中的提问艺术 |
第三章 在数学教学中渗透Arts情况的现状调查 |
3.1 调查方法 |
3.1.1 问卷调查法 |
3.1.2 半结构访谈法 |
3.1.3 数据处理分析法 |
3.2 调查对象 |
3.3 调查过程 |
3.3.1 制定方案阶段 |
3.3.2 研究实证阶段 |
3.3.3 总结升华阶段 |
3.4 调查思路 |
3.5 调查结果分析 |
3.5.1 学生问卷数据的调查结果分析 |
3.5.2 教师问卷数据的调查结果分析 |
3.6 对南昌市某中学的调查问卷结果分析 |
3.7 STEAM中 ARTS渗透教学效果的调查与分析 |
第四章 ARTS在中学数学教学中的应用案例 |
4.1 逻辑艺术中数学教学中的案例 |
4.2 图形艺术中数学教学中的案例 |
4.3 导入艺术中数学教学中的案例 |
4.4 提问艺术中数学教学中的案例 |
第五章 结论与展望 |
5.1 小结 |
5.2 反思 |
5.3 展望 |
参考文献 |
附录 |
附录1 学生调查问卷 |
附录2 教师调查问卷 |
附录3 逻辑艺术中数学教学中的案例 |
附录4 图形艺术中数学教学中的案例 |
攻读学位期间的研究成果及所获荣誉 |
致谢 |
(2)“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景 |
1.2 研究意义 |
1.3 研究问题 |
1.4 研究创新点 |
1.5 核心概念界定 |
1.6 论文框架 |
第二章 文献综述与理论基础 |
2.1 文献综述 |
2.2 理论基础 |
第三章 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究方法 |
3.4 研究工具 |
3.5 研究思路 |
3.6 需要注意的问题 |
第四章 高中美术生思想状况调查结果与“课程思政”切入点模型 |
4.1 问卷调查实施 |
4.2 数据统计与分析 |
4.3 调查结果与“课程思政”切入点模型的关系 |
4.4 “课程思政”切入点模型 |
第五章 “课程思政”数学教学设计流程 |
5.1 “课程思政”数学教学设计原则 |
5.2 “课程思政”数学教学设计流程 |
5.3 等式性质与不等式性质示例1 |
5.4 基本不等式示例2 |
第六章 “课程思政”数学教学实践与评价 |
6.1 二次函数与一元二次方程、不等式第一课时案例1 |
6.2 二次函数与一元二次方程、不等式第二课时案例2 |
6.3 “课程思政”数学教学效果评价 |
第七章 研究结论、建议与展望 |
7.1 研究结论 |
7.2 研究建议 |
7.3 研究不足 |
7.4 研究展望 |
参考文献 |
附录 |
致谢 |
(3)高中生数学逆向思维能力的现状调查研究与决策(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
二、研究意义 |
(一)理论意义 |
(二)现实意义 |
三、国内外研究现状 |
(一)国外研究现状 |
(二)国内研究现状 |
第二章 概念界定及理论基础 |
一、相关概念的界定 |
(一)思维 |
(二)逆向思维 |
(三)数学逆向思维能力 |
二、理论基础 |
(一)认知发展理论 |
(二)多元智能理论 |
(三)最近发展区理论 |
(四)SOLO分类评价理论 |
第三章 高中生数学逆向思维能力的现状调查 |
一、研究方法 |
二、研究思路 |
三、调查对象 |
四、测试卷与访谈设计 |
(一)学生测试卷的设计 |
(二)教师访谈设计 |
五、测试的实施与评价 |
六、数据的收集与处理 |
七、调查结果与分析 |
(一)教师访谈结果与分析 |
(二)测试卷结果分析 |
第四章 高中数学逆向思维能力现状的成因分析 |
一、数学课堂的教学形式单一 |
二、思维定势影响问题解决灵活性 |
三、教学评价单一 |
四、学生概括反思能力不足 |
五、学生对问题思考度不足 |
六、思维转换障碍与信心不足 |
第五章 高中生数学逆向思维能力培养的建议 |
一、提高教师自身素质 |
二、在课堂教学中加强对学生数学逆向思维能力的培养 |
(一)加强数学概念教学中数学逆向思维能力的培养 |
(二)加强数学公式教学中数学逆向思维能力的培养 |
(三)加强数学定理教学中数学逆向思维能力的培养 |
(四)加强数学方法教学中数学逆向思维能力的培养 |
结论 |
注释 |
参考文献 |
附录 |
附录一 |
附录二 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(4)体验教学在小学高年级“图形与几何”教学中的应用现状研究 ——以扬州市H小学为例(论文提纲范文)
摘要 |
Abstract |
前言 |
一、问题的提出 |
(一) 体验教学是小学数学课程改革所要求的教学方式 |
(二) 在数学课堂中应用体验教学符合小学生的思维发展特点 |
(三) 小学“图形与几何”教学需要体验发展学生的空间观念与几何直观 |
二、研究意义 |
(一) 理论意义 |
(二) 实践意义 |
三、文献综述 |
(一) 体验教学的相关研究 |
(二) 体验教学在小学数学教学中的相关研究 |
(三) 体验教学在小学高年级“图形与几何”教学中的相关研究 |
(四) 评价和启示 |
四、研究思路及方法 |
(一) 研究思路 |
(二) 研究方法 |
五、创新之处 |
第一章 体验教学在小学高年级“图形与几何”教学中应用的理性思考 |
一、核心概念界定 |
(一) 体验教学 |
(二) 小学高年级 |
(三) 图形与几何 |
(四) “图形与几何”教学 |
二、体验教学思想的演进 |
(一) 国外体验教学思想的演进 |
(二) 国内体验教学思想的演进 |
三、体验教学的特点 |
(一) 亲历性 |
(二) 主体性 |
(三) 情境性 |
(四) 生命性 |
(五) 情感性 |
(六) 生活性 |
四、体验教学在小学高年级“图形与几何”教学中应用的意义 |
(一) 有利于学生在教学情境中学会自主学习 |
(二) 有利于学生加速几何知识与已有经验之间的转换 |
(三) 有利于学生“图形与几何”学习情感的生成与升华 |
(四) 有利于学生创新能力与实践能力的培养 |
五、体验教学在小学高年级“图形与几何”教学中应用研究的理论基础 |
(一) 弗赖登塔尔的数学教育理论 |
(二) 情境教学理论 |
第二章 体验教学在小学高年级“图形与几何”教学中应用的现状调查——以扬州市H小学为例 |
一、调查设计 |
(一) 调查对象 |
(二) 调查方法 |
二、调查结果与分析 |
(一) 教师对体验教学内涵与在“图形与几何”教学中应用意义的理解 |
(二) 教师对高年级“图形与几何”体验教学目标的设计 |
(三) 教师对高年级“图形与几何”体验教学资源的开发 |
(四) 教师对高年级“图形与几何”体验教学方式的选择与运用 |
(五) 教师对高年级“图形与几何”体验教学效果的评价 |
第三章 体验教学在小学高年级“图形与几何”教学中应用存在的问题及原因 |
一、体验教学在小学高年级“图形与几何”教学中应用存在的问题 |
(一) 教师对体验教学价值的理解偏重于几何知识与空间观念的习得 |
(二) 体验教学目标的设计对学生学情与情感目标的重视不够 |
(三) 体验教学资源的开发缺少实际生活中“图形与几何”资源的利用 |
(四) 体验教学方式的选用缺少多样性与丰富性 |
(五) 体验教学效果的评价缺少带有激励性的情感评价 |
二、体验教学在小学高年级“图形与几何”教学中应用存在问题的原因 |
(一) 数学教学的应试性使课堂活跃度不够 |
(二) 学时的限制使体验效果与预期有差异 |
(三) 少数学生参与体验活动缺乏主动性 |
第四章 体验教学在小学高年级“图形与几何”教学中应用的改进策略 |
一、教师要加强对体验教学理念的学习与研究 |
(一) 经常观摩名师讲课以探索体验教学艺术 |
(二) 自主参与培训活动以深度理解体验教学内涵 |
(三) 主动开展实践反思以提高体验教学能力 |
(四) 积极加入教学沙龙以形成体验学习共同体 |
二、体验教学目标的设计要注重以情促知 |
(一) 体验教学目标的设计要充分结合学情 |
(二) 体验教学目标的设计要充分了解学生的情感发展水平 |
(三) 体验教学目标的设计要体现阶段性 |
(四) 体验教学目标的设计要达到情知合一 |
三、体验教学资源的运用要体现生活化与多样化 |
(一) 不断挖掘生活实际资源使学生感悟数学实用价值 |
(二) 勤于搜集媒体网络资源使学生感受几何知识魅力 |
(三) 巧妙运用学生的学习情感资源使课堂氛围开放和谐 |
(四) 善于捕捉生成信息资源使课堂朝着纵深方向发展 |
四、体验教学方式的选用要创设多种主体亲历的体验活动 |
(一) 创设丰富情境引导学生主体主动参与体验活动 |
(二) 通过实际操作引导学生经历几何知识快速生成 |
(三) 开展小组合作学习激励学生共同解决几何问题 |
(四) 提供交流反思平台强化学生空间观念与几何直观 |
五、体验教学效果的评价要注重学生的情感发展 |
(一) 重视激励性评价以提升学生学习自信 |
(二) 通过互评充分激发学生积极学习情感 |
(三) 注重自我评价以提高学生学习成就感 |
结语 |
参考文献 |
附录 |
攻读学位期间取得的研究成果 |
致谢 |
(5)融合STEM教育的高中数学活动教学研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.1.1 我国创新人才培养的需要 |
1.1.2 数学课程改革的必然趋势 |
1.1.3 学生主体地位的充分诠释 |
1.2 研究内容 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 研究方法 |
1.4.1 文献分析法 |
1.4.2 实验研究法 |
1.4.3 问卷调查法 |
1.4.4 访谈法 |
1.5 研究思路 |
1.6 本研究的创新性 |
2 研究综述 |
2.1 关于STEM教育的研究综述 |
2.1.1 STEM教育的国外研究现状 |
2.1.2 STEM教育的国内研究现状 |
2.2 关于活动教学的研究综述 |
2.2.1 活动教学的产生与发展 |
2.2.2 活动教学的研究现状 |
2.3 融合STEM教育与高中数学教学的研究现状 |
2.4 小结 |
3 相关概念界定及理论基础 |
3.1 相关概念界定 |
3.1.1 STEM教育 |
3.1.2 数学活动教学 |
3.2 理论基础 |
3.2.1 杜威“从做中学”理论 |
3.2.2 情境学习理论 |
3.2.3 赛耶模型 |
3.2.4 PBL学习模式 |
4 STEM教育在高中数学教材与教学中的现状分析 |
4.1 STEM教育在人教B版高中数学教材中的渗透情况 |
4.1.1 教材总体分布分析 |
4.1.2 专题内容分析 |
4.1.3 结论与建议 |
4.2 STEM教育在高中数学教学中的现状调查 |
4.2.1 调查目的 |
4.2.2 调查对象 |
4.2.3 调查方法 |
4.2.4 调查过程 |
4.2.5 调查结果分析 |
4.2.6 小结 |
5 融合STEM教育的高中数学活动教学模型 |
5.1 STEM教育与高中数学活动教学相融合的可行性分析 |
5.2 融合STEM教育的高中数学活动教学模型的构建原则 |
5.2.1 整合性原则 |
5.2.2 情境性原则 |
5.2.3 实践性原则 |
5.2.4 创造性原则 |
5.3 融合STEM教育的高中数学活动教学模型的构建 |
5.3.1 融合STEM教育的高中数学活动教学模型的构想 |
5.3.2 融合STEM教育的高中数学活动教学模型 |
6 融合STEM教育的高中数学活动教学的案例设计 |
6.1 案例设计一:“身高增长的秘密” |
6.1.1 教材内容分析 |
6.1.2 学情分析 |
6.1.3 教学目标与重难点 |
6.1.4 教学方法 |
6.1.5 教学手段 |
6.1.6 教学过程设计 |
6.1.7 教学评价设计 |
6.2 案例设计二:“测量我们学校的‘珠峰’” |
6.2.1 教材内容分析 |
6.2.2 学情分析 |
6.2.3 教学目标与重难点 |
6.2.4 教学方法 |
6.2.5 教学手段 |
6.2.6 教学过程设计 |
6.2.7 教学评价设计 |
7 融合STEM教育的高中数学活动教学的实验研究 |
7.1 实验准备 |
7.1.1 实验目的 |
7.1.2 实验材料及工具 |
7.1.3 实验对象 |
7.1.4 实验变量 |
7.1.5 实验假设 |
7.2 实验过程 |
7.2.1 实验流程 |
7.2.2 教学过程 |
7.3 实验结果与分析 |
7.3.1 测试卷的设计与实施效果 |
7.3.2 学生访谈问题的设计与实施效果 |
7.3.3 教师访谈问题的设计与实施效果 |
7.3.4 小结 |
8 总结与展望 |
8.1 研究总结 |
8.2 研究不足 |
8.3 研究展望 |
参考文献 |
附录A “STEM教育在高中数学教学中的开展现状”调查问卷 |
附录B “STEM教育在高中数学教学中的开展现状”的教师访谈提纲 |
附录C “身高增长的秘密”学生测试卷 |
附录D “身高增长的秘密”学生访谈提纲 |
附录E “身高增长的秘密”教师访谈提纲 |
附录F “测量我们学校的’珠峰’”测量课题报告表 |
附录G 案例一学生身高数据 |
攻读硕士学位期间发表学术论文情况 |
致谢 |
(6)课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题的提出 |
1.2 核心概念界定 |
1.2.1 课程思政 |
1.2.2 函数模型 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 理论意义 |
1.3.3 实践意义 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 研究重点、难点及创新点 |
1.5.1 研究重点 |
1.5.2 研究难点 |
1.5.3 研究创新点 |
1.6 论文结构 |
第二章 文献综述、理论基础与框架 |
2.1 文献综述 |
2.1.1“课程思政”的研究现状 |
2.1.2“课程思政”在数学教学中的体现 |
2.1.3 函数模型的教学价值 |
2.1.4 函数模型的教学设计 |
2.2 理论基础 |
2.2.1 马克思关于人的全面发展理论 |
2.2.2 认知负荷理论 |
2.3 理论框架 |
2.3.1 课程思政视域下高中数学教学研究理论框架 |
2.3.2 高中数学课程思政维度划分的理论框架 |
第二章 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.3.1 教师访谈提纲 |
3.3.2 学生调查问卷 |
3.3.3 学生前测试卷 |
3.3.4 学生后测试卷 |
3.3.5 学生后测问卷 |
3.4 数据处理 |
第四章 “函数模型的应用”专题教学设计 |
4.1 教学设计目标 |
4.2 教学设计构思 |
4.3 教学设计原则 |
4.4 教学时间安排与进度 |
4.5 教学设计示例 |
第五章 “函数模型的应用”专题教学问卷与访谈分析 |
5.1 课程思政的融入对学生成绩的影响结果分析 |
5.2 课程思政视域下高中数学教学情况的总体特征 |
5.3 课程思政视域下专题教学的前后差异比较分析 |
5.3.1 前后测总体数据的配对样本t检验分析 |
5.3.2 数学品格维度的前后测数据的配对样本t检验分析 |
5.3.3 文化素养维度的前后测数据的配对样本t检验分析 |
5.3.4 价值理念维度的前后测数据的配对样本t检验分析 |
5.4 教师访谈结果分析 |
第六章 讨论、结论与建议 |
6.1 讨论 |
6.1.1 关于课程思政的融入对学生成绩影响的讨论 |
6.1.2 关于专题教学整体实践效果的讨论 |
6.1.3 关于课程思政各个子维度的实践效果比较研究 |
6.2 结论 |
6.3 建议 |
6.3.1 丰富课程思政交流形式,提升教师思政育人意识 |
6.3.2 以数学为基点联系社会热点,拓宽教师思政储备 |
6.3.3 分阶段制定思政育人目标,学科间共享思政成果 |
6.3.4 利用信息技术创新课堂形式,于互动中达到育人实效 |
6.3.5 弘扬优秀文化与先进事迹,营造良好思政环境 |
6.3.6 质性评价与定量评价相结合,细化思政考核方式 |
6.4 不足与展望 |
参考文献 |
附录 |
附录一 教师访谈提纲(教学设计前) |
附录二 教师访谈提纲(教学实践后) |
附录三 学生预测试调查问卷(第一版) |
附录四 学生预测试调查问卷(第二版) |
附录五 学生正式前测调查问卷 |
附录六 学生正式后测调查问卷 |
附录七 专家意见表 |
附录八 专家评价表 |
附录九 学生后测试题 |
致谢 |
(7)高中函数教学中数学逆向思维能力培养的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 社会发展对创新型人才的需求 |
1.1.2 数学课程教学改革的要求 |
1.1.3 函数在高中数学课程中的重要性 |
1.2 研究内容 |
1.3 研究意义 |
1.4 研究思路 |
1.4.1 研究计划 |
1.4.2 研究技术路线 |
1.5 论文结构 |
第2章 文献综述及理论基础 |
2.1 思维相关研究 |
2.1.1 国内思维研究综述 |
2.1.2 国外思维研究综述 |
2.2 逆向思维相关研究 |
2.2.1 国内逆向思维能力研究综述 |
2.2.2 国外逆向思维能力研究综述 |
2.3 数学逆向思维相关研究 |
2.3.1 国内数学逆向思维能力研究综述 |
2.3.2 国外数学逆向思维能力研究综述 |
2.4 函数教学相关研究 |
2.4.1 国内函数教学研究综述 |
2.4.2 国外函数教学研究综述 |
2.5 核心概念界定 |
2.5.1 思维与数学思维 |
2.5.2 逆向思维 |
2.5.3 数学逆向思维 |
2.6 理论基础 |
2.6.1 认知接受理论 |
2.6.2 多元智能理论 |
2.6.3 最近发展区理论 |
第3章 数学逆向思维在函数知识模块中的应用 |
3.1 数学逆向思维解题策略 |
3.1.1 反证法 |
3.1.2 反例法 |
3.1.3 逆转换元 |
3.1.4 分析法 |
3.2 逆向思维在函数知识教学中的应用 |
3.2.1 函数概念 |
3.2.2 函数性质 |
3.2.3 基本初等函数 |
3.2.4 函数的零点问题 |
3.2.5 三角函数 |
3.2.6 数列 |
3.2.7 导数 |
第4章 研究设计 |
4.1 研究目的 |
4.2 研究对象的选取 |
4.3 研究方法的说明 |
4.4 研究工具的设计 |
4.4.1 测试卷的设计 |
4.4.2 调查问卷的设计 |
4.5 数据的收集与整理 |
4.5.1 数据的收集 |
4.5.2 数据的整理 |
第5章 高中生数学逆向思维能力的调查结果及分析 |
5.1 学生测试卷量化分析 |
5.1.1 整体情况分析 |
5.1.2 函数内容中数学逆向思维能力与班级层次的差异性分析 |
5.1.3 函数内容中数学逆向思维能力与性别的差异性分析 |
5.1.4 函数内容中数学逆向思维能力与数学平时成绩的相关性分析 |
5.2 学生测试卷质性分析 |
5.2.1 测试卷第1题 |
5.2.2 测试卷第2题 |
5.2.3 测试卷第3题 |
5.2.4 测试卷第4题 |
5.2.5 测试卷第5题 |
5.3 学生问卷分析 |
5.4 教师问卷分析 |
5.5 研究结果 |
5.5.1 高中函数教学中学生数学逆向思维能力培养现状 |
5.5.2 影响因素 |
第6章 高中函数教学中逆向思维能力的培养建议 |
6.1 转变教师教学观念,提高教学能力 |
6.1.1 不断学习数学教学理论知识、更新教学观念 |
6.1.2 充分钻研教材知识,在数学教学中渗透逆向思维方法 |
6.1.3 丰富教学模式,给予学生思考的空间 |
6.2 创设逆向情境,营造良好的学习氛围 |
6.2.1 营造融洽平等的学习氛围 |
6.2.2 创设正逆结合的学习情境 |
6.2.3 倡导互助交流的学习方式 |
6.3 在解题反思中提升数学逆向思维能力 |
第7章 研究的结论与反思 |
7.1 研究结论 |
7.2 研究反思 |
7.2.1 研究不足 |
7.2.2 研究展望 |
7.3 结束语 |
参考文献 |
附录A 学生问卷 |
附录B 教师问卷 |
附录C 测试卷 |
攻读硕士期间发表的论文 |
致谢 |
(8)基于数学史网络研修的在职初中数学教师观念发展研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 引论 |
1.1 背景 |
1.1.1 数学史教育价值呼吁实证研究的验证 |
1.1.2 教育改革落实亟需教师观念的调整 |
1.1.3 信息技术发展强力支撑教师网络研修的推行 |
1.2 研究问题 |
1.3 研究意义 |
1.4 论文结构概览 |
第2章 文献综述 |
2.1 数学教师观念 |
2.1.1 国内教师信念及观念研究述评 |
2.1.2 国外教师信念及观念研究述评 |
2.2 数学史与教师专业发展 |
第3章 概念框架 |
3.1 理论的作用 |
3.2 研究问题中的理论要素 |
3.3 观念及信念系统 |
3.3.1 信念内涵:信念和知识 |
3.3.2 信念结构:信念系统 |
3.4 教师的数学观 |
3.4.1 三种概观和判断 |
3.4.2 三种数学观 |
3.4.3 大纲及课标中的数学观 |
3.5 教师的数学教学观 |
3.5.1 三种数学教学观 |
3.5.2 大纲及课标中的数学教学观 |
3.6 理论视角的联系 |
3.7 研究问题的细化 |
第4章 研究设计 |
4.1 项目背景 |
4.1.1 主题选择 |
4.1.2 项目组织 |
4.2 研究方法 |
4.3 数据收集 |
4.4 研究工具 |
4.5 数据分析 |
4.6 信效度分析 |
第5章 教师观念变化趋势 |
5.1 数学观变化趋势的量化分析 |
5.2 数学观变化趋势的质性分析 |
5.2.1 数学演进 |
5.2.2 数学应用 |
5.2.3 数学本质 |
5.3 数学教学观变化趋势的量化分析 |
5.4 数学教学观变化趋势的质性分析 |
5.4.1 教学目标 |
5.4.2 教学过程及师生角色 |
5.4.3 学生学习 |
5.4.4 教学资源 |
第6章 教师观念转变案例研究 |
6.1 个案 1:孙老师 |
6.1.1 孙老师的数学观 |
6.1.2 孙老师的数学教学观 |
6.1.3 孙老师案例小结 |
6.2 个案 2:侯老师 |
6.2.1 侯老师的数学观 |
6.2.2 侯老师的数学教学观 |
6.2.3 侯老师案例小结 |
6.3 个案 3:李老师 |
6.3.1 李老师的数学观 |
6.3.2 李老师的数学教学观 |
6.3.3 李老师案例小结 |
6.4 跨案例分析 |
6.4.1 数学观 |
6.4.2 数学教学观 |
6.4.3 发展机制 |
第7章 结论 |
第8章 讨论 |
8.1 与已有研究的联系 |
8.2 可能回答的问题 |
8.3 回顾理论与方法论 |
8.4 回顾教育研究的三个方面 |
8.5 启示、局限与展望 |
参考文献 |
附录 |
附录1 研修主题示例 |
附录2 数学观及数学教学观开放问卷(研修前后) |
附录3 函数主题反思单示例 |
附录4 个案教师访谈提纲(研修后) |
附录5 《中学数学教师数学观问卷》正式问卷 |
附录6 a《中学数学教师数学教学观问卷》初测问卷 |
附录6 b《中学数学教师数学教学观问卷》正式问卷 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(9)小学数学“有过程的归纳教学”模式建构(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)时代发展、创新人才的培养召唤“过程的、归纳的”教学 |
(二)教育改革诉求“注重过程,处理好‘过程与结果的关系’” |
(三)知识的“先验性”和儿童学习心理机制呼唤“有过程的归纳教学” |
(四)对“有过程的归纳教学”的模式进行研究具有必要性和迫切性 |
二、研究问题 |
(一)“有过程的归纳教学”的理论阐释 |
(二)小学数学“有过程的归纳教学”的模式构建 |
(三)小学数学“有过程的归纳教学”的模式修正 |
三、研究意义 |
(一)理论意义 |
(二)实践价值 |
四、论文结构 |
第二章 文献综述 |
一、关于“过程”及“过程教学”的研究 |
(一)“过程教育”涵义及价值 |
(二)课程中的“过程目标” |
(三)关于“过程教学”研究的回顾与反思 |
二、关于“归纳”及“归纳教学”的研究 |
(一)“归纳推理”涵义及价值 |
(二)数学课程中的“推理能力” |
(三)关于“归纳式教学”研究的回顾与反思 |
三、关于教学模式的研究 |
(一)教学模式的涵义 |
(二)几种典型的教学模式 |
(三)教学模式研究的回顾与反思 |
四、研究的启示 |
第三章 研究设计与方法 |
一、研究思路与框架 |
(一)研究思路 |
(二)研究阶段 |
(三)研究框架 |
二、研究对象的选取 |
(一)研究的学校 |
(二)研究的学科 |
(三)典型课例的选取 |
(四)实践研究的教师和学生 |
三、研究方法的确定 |
(一)文献分析 |
(二)视频图像分析 |
(三)课堂观察 |
(四)访谈 |
(五)作品分析 |
四、资料的整理与分析 |
(一)教学模式理论阐释阶段资料的整理与分析 |
(二)教学模式原型构建阶段资料的整理与分析 |
(三)教学模式实践修订阶段资料的整理与分析 |
五、研究的真实性与可靠性 |
第四章 “有过程的归纳教学”理论阐释 |
一、“有过程的归纳教学”的立论基础 |
(一)“有过程的归纳教学”的理论基础 |
(二)“有过程的归纳教学”的现实基础 |
二、“有过程的归纳教学”的基本内涵 |
(一)归纳式教学 |
(二)过程性教学 |
(三)有过程的归纳教学 |
三、“有过程的归纳教学”的典型特征 |
(一)情境性 |
(二)过程性 |
(三)建构性 |
四、“有过程的归纳教学”的条件系统 |
(一)教学的情境性条件 |
(二)教学的过程性条件 |
(三)教学的建构性条件 |
五、小结 |
第五章 小学数学“有过程的归纳教学”模式原型构建 |
一、小学数学“有过程的归纳教学”典型案例的分析 |
(一)教学内容 |
(二)教学结构 |
(三)教学方式 |
二、小学数学“有过程的归纳教学”模式原型的核心要素 |
(一)“类特征”的学习主题 |
(二)“挑战性”的问题情境 |
(三)“探究性”的操作活动 |
(四)“贯穿性”的归纳建构 |
(五)“嵌入式”的学习评价 |
三、小学数学“有过程的归纳教学”模式原型的设计 |
(一)指导思想 |
(二)功能目标 |
(三)操作流程 |
(四)实现条件 |
四、小结 |
第六章 小学数学“有过程的归纳教学”的教学迭代 |
一、模式的第一轮运用:宏观的尝试和探索 |
(一)第一轮实践研究的问题 |
(二)第一轮教学模式具身化的过程 |
(三)第一轮教学效果的微观分析 |
(四)第一轮教学模式的反思与调整 |
二、模式的第二轮运用:中观的调整与改进 |
(一)第二轮实践研究的问题 |
(二)第二轮教学模式具身化的过程 |
(三)第二轮教学效果的微观分析 |
(四)第二轮教学模式的反思与调整 |
三、模式的第三轮运用:微观的提升与应用 |
(一)第三轮实践研究的问题 |
(二)第三轮教学模式具身化的过程 |
(三)第三轮教学效果的微观分析 |
(四)第三轮教学模式的反思与调整 |
四、三轮教学研究的总结与反思 |
(一)三轮迭代教学研究概述 |
(二)对三轮迭代教学研究的评鉴 |
(三)对“P-I”教学模式的讨论 |
第七章 研究结论与展望 |
一、对研究问题的回应 |
(一)什么是“有过程的归纳教学” |
(二)小学数学“有过程的归纳教学”的模式原型 |
(三)小学数学“有过程的归纳教学”模式的修订与完善 |
二、研究结论 |
(一)“P-I”教学模式阐释 |
(二)“P-I”教学模式的特色与创新 |
(三)小学数学“有过程的归纳教学”的设计策略 |
(四)小学数学“有过程的归纳教学”的实施策略 |
三、研究反思与展望 |
(一)研究反思 |
(二)后续研究展望 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及着作情况 |
(10)核心素养背景下的高中复数内容与学生理解的若干相关问题探究(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
一、研究背景 |
二、研究问题 |
三、研究意义 |
四、研究思路与框架 |
五、研究方法 |
六、核心概念界定 |
第二章 文献综述 |
一、复数的历史发展过程概述 |
二、高中复数课程内容组织的研究 |
三、高中复数课程的比较研究 |
四、高中复数教与学的研究 |
五、数学理解的研究 |
六、小结 |
第三章 核心素养与高中复数教育价值 |
一、复数与学生数学核心素养发展 |
二、高中复数教育价值判断的依据 |
三、高中复数教育价值的阐释 |
第四章 高中复数课程文本的比较研究 |
一、我国历年高中复数课程文本的纵向比较 |
二、高中复数课程文本的国际横向比较 |
第五章 高中生复数理解水平研究 |
一、测评的意义 |
二、研究的理论基础 |
三、研究方法设计 |
四、测试的指标分析 |
五、测试结果统计 |
六、分析与结论 |
七、高中生复数理解水平测试表现的讨论 |
第六章 核心素养背景下的高中复数课程内容分析 |
一、源于课程与教学理论的思考 |
二、基于研究实践的探索 |
三、高中复数的基本内容及其层级关系 |
四、核心素养背景下的高中复数课程内容发展建议 |
第七章 结论与展望 |
一、研究结论 |
二、研究展望 |
参考文献 |
附录 |
附录一 高中生复数理解水平测试卷(预测试) |
附录二 高中生复数理解水平测试卷(正式测试) |
附录三 我国历年教学大纲或课程标准中的复数内容 |
附录四 美国、新加坡、英国、澳大利亚高中数学课程标准复数内容 |
后记 |
在学期间公开发表论文及着作情况 |
四、在数学教学中加强创新能力的培养(论文参考文献)
- [1]STEAM中Arts在中学数学教学中的应用现状调查及实践研究[D]. 孙思思. 江西科技师范大学, 2021(12)
- [2]“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例[D]. 李兆敏. 天津师范大学, 2021(09)
- [3]高中生数学逆向思维能力的现状调查研究与决策[D]. 杨雨桐. 哈尔滨师范大学, 2021(08)
- [4]体验教学在小学高年级“图形与几何”教学中的应用现状研究 ——以扬州市H小学为例[D]. 郑云端. 扬州大学, 2021(09)
- [5]融合STEM教育的高中数学活动教学研究[D]. 刘俊含. 辽宁师范大学, 2021(08)
- [6]课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例[D]. 孙贺. 天津师范大学, 2021(10)
- [7]高中函数教学中数学逆向思维能力培养的调查研究[D]. 余江燕. 云南师范大学, 2021(08)
- [8]基于数学史网络研修的在职初中数学教师观念发展研究[D]. 孙丹丹. 华东师范大学, 2021(09)
- [9]小学数学“有过程的归纳教学”模式建构[D]. 石迎春. 东北师范大学, 2021(09)
- [10]核心素养背景下的高中复数内容与学生理解的若干相关问题探究[D]. 彭艳贵. 东北师范大学, 2020(04)