脱氧核酶抗丙型肝炎病毒活性的实验研究

脱氧核酶抗丙型肝炎病毒活性的实验研究

于乐成[1]2003年在《脱氧核酶抗丙型肝炎病毒活性的实验研究》文中认为随着现代分子生物学及相关学科的飞速发展,近年来发现多种具有特定生物催化功能的酶性DNA分子(catalytic DNA),即所谓脱氧核酶(deoxyribozyme)。脱氧核酶结构不同,生物催化功能也相异;其中,活性中心为5'-GGCTAGCTACAACGA-3',能特异性剪切RNA分子的脱氧核酶在基因调控中的潜在应用价值尤为引人注目。与反义寡脱氧核苷酸(ASODN)相比,脱氧核酶分子既具有一定的反义抑制效果,又能通过改变RNA分子的空间构象以促其断裂;一个脱氧核酶分子可剪切多个RNA分子。与核酶相比,脱氧核酶识别的位点为5'…Y↓R…3'(Y=A/G,R=U/C),有更多可供选择的靶位,且性质相对稳定,结构相对简单。因此,它可能兼具核酶和ASODN的优势。应用脱氧核酶抗HIV-1、HPV-16、多种恶性肿瘤相关基因mRNA等的初步研究已显示了不同程度的效果,但应用脱氧核酶抗肝炎病毒的研究鲜见。病毒性肝炎至今仍缺乏充分有效的治疗措施。长期以来人们不断在探索各种可能的治疗新策略;脱氧核酶的发现为这种尝试提供了新的机遇。本课题通过分析丙型肝炎病毒5'-非编码区及部分C区(HCV 5'-NCR-C)的序列和5'-NCR的二级结构,设计4组3类共12种脱氧核酶,对其在体外分子水平、转基因肝癌细胞和感染有HCV的胎肝细胞水平的剪切和/或抑制活性进行系统评价,探讨其用作抗肝炎病毒基因调控或治疗的可能性。一、丙型肝炎病毒特异性脱氧核酶的设计和靶位筛选靶位的选择是脱氧核酶的设计基础,需结合多方面的因素加以考虑。HCV 5'-NCR高度保守,含有内部核糖体进入位点(IRES)等关键功能区。化学探测、核酸酶消化试验、热力学(自由能)推算及计算机模拟等均显示其二级结构可划分为Ⅰ~Ⅳ区。Ⅰ区可能有阻止病毒翻译启动的作用;Ⅱ区可稳定5'-NCR的空间结构及其与宿主核糖体等的结合,从而消除Ⅰ区的影响;Ⅲ和Ⅳ区是IRES的主要跨越区域,是5'-NCR最为重要的翻译启动和调控功能区。因此,靶位选择主要应在Ⅲ和Ⅳ区进行,适当兼顾Ⅱ区,避免位于Ⅰ区。5'-NCR在不同的临床分离株仍存在一定变异;为了保证所设计的脱氧核酶对各临床分离株具有普遍性作用,应避免选择存在碱基变异的区域作靶序列。此外,虽然符合5'…R↓Y…3' 特征的位点均有可能是脱氧核酶的作用靶位,但5'…A↓U…3' 或5'…G↓U…3' 可能相对易被切开,是优先考虑的位点。通过测序确证质粒pHCV-neo中HCV 5'-NCR-C的序列后,根据5'-NCR的二级结构模型和脱氧核酶所能识别的底物序列特征,综合比较HCV 5'-NCR中各潜在靶位所<WP=12>处的功能区域和局部结构特点,确定第-232、-127、-84和+1共4个位点为研究对象,从而分别设计出3类脱氧核酶,即未经修饰的脱氧核酶(DRz)、两端各有两个碱基被硫代修饰的脱氧核酶(TDRz)和活性中心人工突变的脱氧核酶(MDRz)。二、丙型肝炎病毒特异性脱氧核酶在细胞外分子水平的剪切活性用限制性内切酶Nar I将pHCV-neo完全线性化,以WizardR DNA纯化系统回收长3133bp的HCV RNA 5'-NCR-C转录模板。以T7转录试剂盒体外转录获取HCV 5'-NCR-C,用CIP去除其5' 端磷酸,再以T4聚核苷酸激酶和γ-32p-ATP进行5' 端标记。产物用8%变性聚丙烯酰胺凝胶电泳(PAGE)分离纯化。各剪切反应体系分别含每种DRz、TDRz或MDRz 5μmol/L(两种TDRz联合应用时各为2.5μmol/L),放射性标记底物200nmol/L,在合适的pH及Mg2+浓度下,混合物经适当变性、复性并于37℃孵育一定时间后,进行8%变性PAGE,-70℃放射自显影,应用Gel DocTM 2000型凝胶成像分析仪分析各条带光密度值并计算剪切百分率。结果显示,各脱氧核酶定点剪切底物RNA的能力相差较大,以DRz-127、TDRz-127和DRz1、TDRz1的活性相对较高;37℃孵育90min后,剪切率分别达32.6%、30.8%和24.3%、21.5%。TDRz与对应DRz相比,剪切率无显着性差别,提示适当硫代修饰对脱氧核酶活性无明显影响。MDRz无产物条带,提示基本丧失剪切能力,表明脱氧核酶活性中心基序(motif)高度保守。TDRz-127和TDRz1的单独及联合剪切率分别从15min时的8.3%、7.4%和15.1%提升到90min时的31.1%、20.3%和42.6%,提示联合应用有一定的迭加效应。反应75~90min后剪切率难以进一步提升,可能与靶位是否得当、底物结合区长度是否优化以及底物二级结构的形成等有关。由于碱基构成不同,对底物结合区进行优化有可能在一定程度上改善活性。HCV RNA全长约9400nt,必然较单纯5'-NCR-C形成更复杂的二级结构,且细胞内环境较细胞外环境复杂得多;因此,有必要在细胞水平进一步评价脱氧核酶的活性。叁、丙型肝炎病毒特异性脱氧核酶在转基因肝癌细胞株中的活性应用转基因细胞株和化学发光法可以快速、准确地评价脱氧核酶在细胞内对靶基因的作用效果。理论上,脱氧核酶在细胞内对靶RNA的总抑制活性包括反义抑制和定点剪切两个方面。通常设计一组无剪切活性但反义抑制效果相似的对照组(MDRz)进行比较以间接推证剪切效应。HCV 5'-NCR-C调控性荧光素酶转基因HepG2.9706细胞以每孔1×104/100μl接种于96孔培养板,孵育适当时间后给予不同浓度的脱氧核酶,给予方法包括Lipofectin转染5h、直接给予5h或24h。细胞培养完毕后,向?

刘波[2]2007年在《CTE-RHA复合核酶的构建及抑制HCV RNA复制和相应蛋白表达的研究》文中认为目的构建实验所需的真核表达载体,特别是人源性tRNA val启动子驱动CTE介导的核酶高效表达载体pPHCV5-CR以及对应的无CTE介导的载体pPHCV5-R;建立HCV Subgenomic Replicon稳定转染和表达的细胞株;探讨核酶和核酶-CTE复合物对丙型肝炎病毒亚基因组的影响,进一步探讨丙型肝炎治疗研究方向。研究方法1、构建相应的核酶载体合成CTE-DNA,设计、构建含tRNAval启动子的核酶和带有CTE的含tRNAval启动子的核酶。2、建立HCV Subgenomic Replicon稳定转染和表达的细胞株在脂质体lipofectamine TM2000介导下,将含有HCV Subgenes的真核表达质粒pHCV BM4-5导入人肝癌细胞系QSR7701中,经G418筛选抗性克隆,扩大培养,建立转染克隆细胞系。用反转录聚合酶链反应(RT-PCR)和蛋白印迹法证实转染成功及其蛋白表达。3、观察四种质粒pPHCV5-R1、pPHCV5-R2、pPHCV5-CR1、pPHCV5-CR2对HCV Subgenomic Replicon稳定转染和表达的细胞株中HCV RNA和相应病毒蛋白表达的影响。结果1、经测序后证实,成功构建相应的核酶载体,为下一步实验奠定基础。2、经RT-PCR和Western Blot证实,成功建立稳定转染HCVSubgenomic Replicon和表达的细胞株。3、用构建的普通核酶pPHCV5-R1、pPHCV5-R2和复合核酶pPHCV5-CR1、pPHCV5-CR2瞬时转染含HCV亚基因复制子的稳定转染QSG7701细胞株,48小时后收集细胞进行RT-PCR和WesternBlot,RT-PCR(以β-actin为内对照)结果显示:pPHCV5-CR1转染组未见明显扩增目的条带,pPHCV5-R1转染组可见扩增目的条带,亮度低于未转染组和空质粒转染组;pPHCV5-CR2转染组可见扩增目的条带,亮度低于未转染组和空质粒转染组,pPHCV5-R2转染组可见扩增目的条带,亮度与未转染组和空质粒转染组接近。这些提示:复合核酶(带有CTE)在细胞内的切割靶RNA的效率明显高于普通核酶。普通核酶难以切割的位点,复合核酶能进行有效的切割;普通核酶能进行切割的位点,带CTE-核酶的切割效率明显提高。WesternBlot(以β-actin为内对照)结果显示:应用软件分析各组细胞目的蛋白表达量无明显差异,可能与瞬时转染作用时间短、蛋白表达变化不明显,也可能与实验重复次数少、可用数据少或者检测方法有关。结论新型核酶(带有CTE)在细胞内的切割靶RNA的效率明显高于普通核酶。普通核酶难以切割的位点,带CTE-核酶能进行有效的切割;普通核酶能进行切割的位点,带CTE-核酶的切割效率明显提高。

参考文献:

[1]. 脱氧核酶抗丙型肝炎病毒活性的实验研究[D]. 于乐成. 第叁军医大学. 2003

[2]. CTE-RHA复合核酶的构建及抑制HCV RNA复制和相应蛋白表达的研究[D]. 刘波. 中南大学. 2007

标签:;  ;  ;  ;  

脱氧核酶抗丙型肝炎病毒活性的实验研究
下载Doc文档

猜你喜欢