关键词:现代控制技术;风力发电控制系统;应用
一、我国风力发电的现状
作为新能源的一个重要部分,风力发电近年来的发展越来越好。全球的能源越来越少,之前的能源已经不足人们也已经意识到了这个问题,风力发电无污染,施工时间比较短,投资也不多,而且需要的地区也不多,这就使得各个国家对其越来越关注。在风力发电系统中,并网逆电器是一个非常重要的装置,其特性的好坏决定了发电是否灵活。随着信息技术的发展,人们也将风力发电系统做出了很多改变,使其性能得到了很大改进,促进了其进一步发展。
二、控制技术在风力发电系统的运用
2.1微分几何控制技术在风力发电系统中的运用
微分几何作为数学这一学科中的重要组成部分,其主要用来对线性关系进行阐述与表达,在当前社会中的应用较为普遍。由此可知,微分几何控制技术在风力发电系统中的应用主要体现在对线性化控制情况的表达。风力发电控制系统本质上就是一个非线性系统,而其在实际运转过程中势必会受到风能参数的动态化影响。因此,微分几何控制技术在风力发电系统中的运用必须解决非线性关系这一问题,随后再向双馈发电机发挥操作指令,然后结合发电机的反应情况来实现对风力发电控制系统的高效运转,确保有效捕捉风能,满足风力发电生产要求。通过对微分几何控制技术的应用,就能够将风力发电机非线性关系转换为线性关系,将非恒速发电机组控制操作化繁为简。与此同时,微分几何非线性控制技术在风力发电系统中的应用难点在于计算难度较大,且具有一定局限性。
2.2自适应技术在风力发电控制系统中的应用
风力发电作为一种新型的发电模式,在发电控制过程中会涉及到很多的数据,而且传统的控制系统是在风力发电发展初期进行应用的,传统风力发电控制系统灵敏性相对较差,控制措施效果也相对较低,在风力发电过程中,由于控制系统的失误和技术的不足很容易造成电力事故,那时现代化信息化控制技术发展速度较慢,而且应用范围相对较小。随着科学技术的发展,现代化信息化技术的提高,现代化控制技术也被广泛应用,自适应控制技术就是现代化信息化技术高度发展的一种具体的控制技术,自适应控制系统反应灵敏,在控制过程中如果被控制的设备发生变化可以及时进行捕捉,并自动采取相应的控制措施,在风力发电的发展过程中,相关的工作科研人员为了更好地对风力发电系统进行控制,保证风力发电的稳定性,随着科技发展,也在不断的完善风力发电控制系统,但是风力发电的控制系统本身有不完善的地方,控制系统灵活性强,但是灵敏度差,在发生变化的过程中无法及时感应并进行控制,这样就降低了,在这种情况下,自适应的应用很大程度上解决了这种问题,自适应技术其本身是技术水平相对较高的控制手段,其灵敏性和自动化的控制措施很大程度上补充了风力发电系统中相关控制技术的不足,并提高了风力发电控制系统整体的灵敏性,在发生变化时可以及时及时捕捉,采取控制措施,对风力发电工程的发展有积极的推动作用。
2.3人工神经网络技术在风力发电控制系统中的应用
人工神经网络称之为非线性映射,具有很强的抗逆能力,具有一定的自组织性,可以学习与适应不确定系统的动态特征,并具有其他系统无法比拟的容错能力。风速是始终处于变化状态的,风速预测既和预测方法有很大关系,也与预测地点与预测周期有很大关系。
期刊文章分类查询,尽在期刊图书馆可使用时间序列神经网络短期风速预测方法,这种方法用时间序列模型对神经网络中输入量进行选择,并使用多层反向传播网络系统预测风速序列。使用神经网络对风电场发电量进行预测,这样可降低功率波动率。使用前对人工神经网络估计风速,这样能够加强系统的动态性能,即便在现实环境中风速出现了很大的变化,也可以正常稳定运作。在风电机组研究过程中,变桨距系统是很重要的一部分。结合变速变距型风电机组液压驱动变式情况,可使用控制神经网络变距的方式,来完善解决变桨距机构的参数时变性、滞后性控制等一系列问题。
三、风力发电的控制技术的发展
3.1风力发电机组控制技术的发展
控制技术极其重要,它是决定发电机组可以快速运行的关键,以下是几条原因:(1)风力机得到的风能是不能控制的,有些随意。因为平时的风速的方向和大小受大气和地形的影响而变得随机和难控制。(2)风力发电机组的的的风轮有很大的惯性,因为它的叶片直径在一定范围内,更好地利用了风能。(3)自动控制在多方面也能更好地被利用,比如在风力发电的并网和脱网时。(4)风力发电所需的风力所在的地方都是比较偏远的,一般在海边,工作人员想采用无人近距离的监控的方法来控制比较随机的风力,这就需要风力发电机组变得更好。有些技术在应用到风力发电的的领域后,其它的控制技术也在不断的发展。并且,控制方式也不再单一,向着多方面发展。定桨距型风力机就是桨叶与轮毂的连接是无法改变的。当风速高于额定风速时,用失速特性,限制发电机的功率就是失速性。而失速特性是气流的攻角达到一定时,就会有涡流。失去调节型有许多优势,因为外界因素改变输出功率时,利用桨叶的被动失速调节不做任何控制,极大地简化了系统。但是它的叶片很重,有些部件所受的力有些大,所以风力发电机组的效率很低,也会造成重要的部件被损坏。近年来,我国找到了一种新型风力发电系统,也就是变速恒频风力发电机组,它的很多性质都不受到外界影响。它同恒速风力发电机组比较,其优势是能在风速低时跟踪风速变化,在使用过程中可以更好的使叶尖速比达到适中,在风速比较快时,可以使机组正常地运作。前者用变桨距调节和励磁控制使得正常运作。在风机发电控制技术发展的进程中,输出功率比额定功率大时,机组就会利用风速来改变发电机的转差率,达到最优的叶尖速比。该机组的优点是使额定功率得以保证并且输出功率趋于稳定状态。
3.2风力发电机组控制策略的发展
风力发电需要风能,但是风能比较随机它的大小和方向不可控,就会使得叶片改变方向,叶尖速比也达不到标准。风力机的效率也会降低,输入功率也会受到影响,更严重的,会使得其不稳定。风力发电机组的部件有柔性,可以减小压力,不过,会使系统变得复杂会使有的模块震动。现如今,控制器有两类,一是传统控制,二是现代控制。前者的基础是数学模型,可以更好的提高风能的利用率。但在变化过快时,就没办法发挥到最好。
结语:
以上是对现代控制技术的详细介绍。通过对几类典型技术的分析,可看出其在风力发电过程中发挥的重要作用。新型技术的融入,使风力发电摆脱人工操作的局限性,逐渐朝着自动化方向发展。对功率、风速等的有效控制,将发电机保持在最佳工作状态,且大大延长桨叶、电机等装置的使用周期。在科技的支撑下,控制技术还有很大发展空间。
参考文献:
[1]任丽娜,焦晓红,邵立平.风力发电机速度跟踪自适应控制研究[J].太阳能学报,2017,30(10).
[2]郝雅楠.信息化控制技术在风力发电控制系统中的运用[J].时代农机,2016,43(9):25-26.
[3]李武东.谈风力发电电气控制技术及应用实践[J].科技与创新,2017(18):147+150-151.
[4]李轶男.试析风力发电设备的电气控制技术[J].中国战略新兴产业,2017(28):197.
论文作者:魏国庆
论文发表刊物:《当代电力文化》2019年第15期
论文发表时间:2019/12/12
标签:风力发电论文; 技术论文; 风速论文; 控制系统论文; 系统论文; 风能论文; 过程中论文; 《当代电力文化》2019年第15期论文;