摘要:针对农田环境状况复杂、监测难度大等现状,设计了一种基于无线传感器网络的农田环境监测系统。该系统利用传感器节点采集农田环境参数后,通过检测技术发送到控制中心,再对数据进行分析和处理,使农田管理者能精确直观地控制农作物种植过程中的关键参数,具有很好的实用价值。
关键词:农田环境参数;无线传感器网络;传感器节点;实时监控;
我国是农业大国,农业是国民经济的基础产业,农业生产受到温度、湿度、水分等多种农田环境因素的影响。因此,在农业生产过程中引入现代信息技术,可以准确、高效地收集农田信息,对提高农产品产量具有重要意义。
针对农田环境复杂、监测难度大等特点,充分利用无线传感器网络灵活而强大的组网功能,设计了无线传感器网络的农田环境监测系统,该系统由传感器节点、汇聚节点、互联网和用户终端等组成,利用安装在被监测区的传感器节点采集农田环境参数后,通过技术发送到控制中心,再对数据进行分析和处理,使农田管理者能精确直观地控制农作物种植过程中的空气温度、相对湿度、CO2含量、水位等关键参数,对在农业生产过程中实现增产节能有着很好的实用价值。
一、农田环境监测系统总体结构设计
ZigBee技术是一种短距离、低速率的无线通信技术,被广泛应用在无线传感网络的组建中。与其他无线通信技术相比,ZigBee具有网络容量大、工作频段灵活、架构简单、功耗低、成本低、可靠性高、组网能力强和安全等优点;ZigBee由终端设备、协调器和路由器构成。终端设备是指传感器节点,将其按一定规律安装在农田里,配备低功耗的微处理器,监测空气温度、相对湿度、CO2含量、水位、雨量、风向、光照强度、土壤含水量等参数。一定区域内的传感器节点构成一个簇,这些节点又分为簇首和普通节点。簇首主要进行数据的融合及转发,能把簇中普通节点采集到的信息发送到上级的协调器,也能把协调器接收的信息在簇内进行传播;普通节点只能与本簇的簇首交换信息。协调器把监测到的信息传输到网关,然后网关通过GPRS把数据传送到监控中心。ZigBee网络主要有网状和星状,星状拓扑结构简单,但是覆盖能力差,且只要簇首出现故障整个网络就瘫痪;网状拓扑覆盖能力强、可靠性好,但结构复杂。农田区域环境复杂,存在很多不利因素,为提高ZigBee的精确性,该设计采用星状—簇首—路由拓扑结构。
二、功能模块设计
2.1 硬件结构设计
1)传感器节点。该模块主要集成了各种传感器,对温度、湿度、光照强度、土壤PH值等物理量进行采集,由 AD 转换器将模拟电信号转换成数字信号。其中温湿度传感器采用的是数字温湿度传感器DHT21,它是一款含有已校准数字信号输出的温湿度复合传感器;本方案中选择TSL2561作为光强度传感器,它具备高速、低功耗、宽量程、可编程且可以根据用户灵活配置等优势;CO2浓度传感器采用超低功耗红外二氧化碳传感器COZIR-A,其他传感器接口已经留出,方便以后进行扩展。
2)网关。网关的任务是把传感器节点监测到的数据由ZigBee网络通过GPRS发送到监控中心及对数据进行处理和存储。网关由电源模块、存储模块、控制模块、射频模块以及相关I/O接口组成。
网关进行数据传输和处理的工作量较大,因此采用AT91SAM9261微处理器。该处理器具有高性能、低功耗等优点。射频收发模块使用CC2530,主要任务是和ZigBee网络进行数据双向传输。GPRS无线通信模块使用Motorola公司的G20产品,通过GPRS网络和监控中心进行数据的无线传输。
期刊文章分类查询,尽在期刊图书馆
3)处理器模块。该模块负责控制整个传感器节点的操作、数据的存储和处理,是传感器节点的核心。在农业环境监测系统中根据低功耗和处理能力的需要,本系统采用TI公司生产的16位超低功耗单片机MSP430F149。它具有RISC CPU内核,内部集成了12Bit模数转换器、内部温度传感器、16位定时器A和定时器B、串行异步通信端口UART0和UART1(软件可选择UART/SPI模式)、硬件乘法器,多达48位的通用IO端口、60kB的FLASH程序空间和2kB的数据空间等诸多外设,可直接用JTAG仿真调试。MSP430F149具有多种模式可选,在设施农业环境监测系统中,可根据不同的需要,切换模式以降低系统功耗。
3)无线射频模块。无线射频模块主要是控制信息的无线收发。无线通信模块消耗了整个传感器节点的绝大部分能量,故选择低功耗、高性能的射频模块是整个系统的关键之一。基于现代设施农业环境监测的实际情况,本系统无线射频模块采用CC2430无线射频芯片。无线射频模块采用TICHIPCON公司的CC2430芯片。CC2430内部集成了RF收发模块,利用2.4GHz公共频率,应用于监视、控制网络时具有低成本、低耗电、网络节点多、传输距离远等优势;该芯片性能稳定,具有良好的无线接收灵敏度和强大的抗干扰能力;在休眠模式时仅0.9μA的流耗,外部的中断或RTC能唤醒系统;CC2430的休眠模式和转换到主动模式的超短时间的特性,正常工作时需要的外部元器件极少,与主控制器接口简单,特别适合低功耗的无线传感器网络的应用。
4)电源管理模块。电源管理模块为系统其它各模块提供持续、稳定的能量供应,由于此监测终端为户外不间断工作,为降低功耗,电源管理模块加入低功耗的管理和控制,通过软件机制实现多种工作模式(包含正常模式和休眠模式),当节点不工作时系统即进入休眠模式。考虑到系统将长期使用,可以通过外接电源或外接蓄电池和太阳能电池板以保证系统的持续供电。
2.2 节点软件设计
基于环境监测系统长时间工作的需要,传感器节点软件系统设计的关键是在保证能有效实现必要功能的前提下最大限度地减小节点的能耗。无线传感器网络中监测节点的能耗主要集中在通信能耗和传感器模块的能耗,而通信能耗要远大于传感器模块能耗。因此,节点电源打开后,完成ZigBee模块和传感器模块的初始化,建立通信链路后,设置唤醒时钟并进入休眠模式。
三、网络拓扑结构
一般设施农业监测的规模和范围不大,因此本系统的网络拓扑选择简单的星型网络结构,通过对多个监测节点发送的数据进行分析可以判断环境监测区域的状态。系统启动后,根据网络协议组建网络,为节点分配地址。当监控平台查询数据时,系统根据地址分配执行数据采集。
结语:
将无线传感器网络应用于现代设施农业环境信息检测具有传统农业监测方式无法比拟的优势。本文提出了基于ZigBee传感器网络的设施农业环境信息实时监测系统的设计方案。介绍了系统的总体结构和传感器节点的硬件及软件系统设计。本文提出的这一无线传感器监测系统,具有低成本、低功耗、可靠性强等特点,为现代设施农业生产环境信息监测提供了一种有效的解决方案。
参考文献:
[1]杨方. 基于无线传感器网络的农田环境监测系统设计[J]. 湖北农业科学, 2012, 51(15):3334-3335.
[2]孙玉文. 基于无线传感器网络的农田环境监测系统研究与实现[D]. 南京农业大学, 2013.
[3]刘荣, 周杰, 杜景林. 基于无线传感器网络的农田监测系统的网关设计[J]. 湖北农业科学, 2013, 52(7):1672-1675.
论文作者:高九连
论文发表刊物:《电力设备》2017年第14期
论文发表时间:2017/9/4
标签:传感器论文; 节点论文; 农田论文; 模块论文; 网络论文; 环境论文; 监测系统论文; 《电力设备》2017年第14期论文;