摘要:随着电网建设的不断扩大,信息采集技术的提高,数据精细化程度越来越高,电网数据呈现出指数级增长的趋势,如何对这些大数据进行快速准确的分析,挖掘有价值的信息,是当前学术界和产业界共同关注的主题。
关键词:供电企业;客户细分;大数据
一 客户细分的内涵及意义
客户细分是指通过有效收集、归类和分析各方面的需求,定义不同属性与行为特征的客户群,对客户价值、客户风险进行评估。依据评估结果将客户划分为不同的类别,并对其进行管理,同时,针对不同的客户群体为客户提供个性化服务[1]。通过客户细分,企业可以更好的识别不同的客户群体,区别对待不同的客户。客户细分作为一项先进的客户关系管理手段,在以客户为中心的商业经济的今天有着非凡的意义。
而客户细分所用到的技术就是数据挖掘(Data Mining),所谓的数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程[2]。运用数据挖掘技术可以分析客户的更多信息,捕捉更多有价值的信息,有效研究客户行为特征,实现对客户群体的精细化分解,利于为客户提供差异化服务,合理优化资源配置,实现良好的客户关系管理。
二 电力行业的大数据趋势
1.电力行业大数据分析的必要性
在电力行业,随着智能电网建设的不断深入和推进,电网运行产生的海量信息呈指数级增长,采集点越来越多,常规的调度自动化系统数十万点,而配用电、数据中心将达到百万甚至千万级。如果能充分利用这些实际数据,对其进行深入分析,便可以提供大量的高附加值服务,这些增值服务将有利于客户用电行为分析与客户细分、企业精细化运营管理等。
2.电力行业大数据分析的重要性
近年来,国家电网和南方电网用于电网的线路和变电站等方面的建设及管理投入逐渐增大,催生了庞大的电力信息化市场。随着电力智能化的发展,与IT行业嫁接,运用大数据等手段对电网进行实时监控和调节,已经成为时下发展的趋势。智能化电力系统应用范围拓宽,将产生大量的数据,目前电力行业面临的问题已经不是简单的数据量的题,而是如何从海量的数据中识别可用的数据,评估潜在的价值,以及电力信息化过程中的安全问题。
三 大数据下供电企业的客户细分
1.客户细分体系架构
规划好客户细分体系能帮助我们理清客户细分的目的与思路以及为什么要进行客户细分,应该如何进行客户细分等问题。本文将整个客户细分体系分为五个层次:
基础数据平台层:弄清楚哪些平台可以对客户细分提供数据支持与功能支持。如营销系统、决策支持平台等。
客户细分管理层:根据业务需求,确定分析的业务场景,如电费回收场景、停电风险场景等。
细分结果分析层:对得出的细分结果进行充分分析,进而得出群中的客户是否符合业务逻辑,分出的群体特征是否符合该群体的所有特征,以及产生的该群体对群内客户会产生什么影响等。 细分结果查询层:让业务人员与业务专家可以查询到细分结果,在实际应用过程中验证分析结果的有效性,通过反馈意见对模型进行调优,使模型更加完善。
细分结果应用层:主要体现客户细分模型的价值与应用,通过细分结果对业务进行指导,从而满足差异化服务的需求。
期刊文章分类查询,尽在期刊图书馆
2.客户细分
基于客户细分架构体系,根据客户的属性特征进行有效性识别与差异化区分,对电力客户进行分群,分为重要客户、重点关注客户、大客户、居民客户、其它客户五群。在客户分群的基础上,按照客户价值、客户行为及客户需求等维度进一步细分,形成若干服务主题。在每个一级分群的基础上,从客户价值、客户需求和客户行为等维度出发,建立模型进行计算分析并分群,优先选择高价值客户、停电敏感客户、欠费风险客户、服务渠道敏感客户和用检风险客户五个二级分群,在二级分群的基础上再进行细分。
(1)高价值客户
高价值客户细分是提取营销系统里与大客户的基本情况、业务需求等相关的字段,运用聚类算法模型,综合考虑各方面因素,对高价值客户进一步细分。分为以下几类:第一群:客户比较沉默,生产情况存在波动,对暂停及暂停恢复业务需求相对较多的大客户群体。在缴费方式上倾向于去营业厅通过现金、支票等方式。第二群:特别活跃的大客户群体,从95598拨打次数、网上营业厅登陆次数反映出沟通活跃。第三群:经营势头良好,对高压增容业务需求量较大,功率因数不达标次数较多的大客户群体。第四群:相对沉默的大客户群,在缴费方式上倾向于通过网银缴费、银行代扣、自助终端等方式。第五群:发生过多次用检不合格的大客户群体。
(2)停电敏感客户
停电敏感客户细分是从部分已经表现出的敏感客户出发,研究各方面属性信息中的规律,并以此规律建立模型,用来判断全体客户的停电敏感程度。再将停电敏感度分数从高到低进行排列,划分不同等级的客户敏感度。根据各个分数段的模型预测提升度,将客户分为四个群体:潜在高敏感客户群、潜在次高敏感客户群、潜在普通客户群、潜在低敏感客户群。
(3)欠费风险客户
欠费风险客户细分是从部分已经发生违章用电的客户出发,根据其违章用电次数研究各方面属性信息中的规律,并以此规律建立模型,用来判断全体客户的电费回收风险程度。根据风险分数从高到低进行排列,划分不同等级的电费回收风险。根据各分数段的模型预测提升度,将客户划分为四个群体:电费回收高风险用户、电费回收中风险用户、电费回收普通风险用户、电费回收低风险用户。
(4)服务渠道敏感客户
服务渠道敏感客户细分是根据系统记录的95598咨询查询记录、营业厅业务办理类型、网上营业厅登陆时间、95598投诉记录、营业厅业务办理工单、网上营业厅办理的业务、短信渠道记录等分析出每个客户的沟通活跃度指数,得出服务渠道敏感客户细分为以下几类:95598偏好群、短信渠道偏好群、网上营业厅偏好群、未接触、营业厅偏好群、掌上营业厅偏好群。
(5)用检风险客户
用电检查主要针对非居民用户,采用决策树和平衡积分卡预测模型,得出用检不合格的风险分数。针对违约风险和窃电风险,分析客户各方面属性数据,挖掘典型的属性字段并结合业务经验建立风险评分卡。通过风险系数评分,将用检风险客户分为以下几类:用检不合格高风险群、用检不合格次高风险群、用检不合格普通风险群、用检不合格偏低风险群、用检不合格低风险群。
四 结束语
随着电力市场改革的不断深化,客观上要求电力企业更关注市场效益,关注重点客户资源。本文从东莞供电局的客户出发,在基础客户分群的基础上,挖掘不同分组客户的不同特征,对每一客户分群实现了进一步细分。客户细分为后续制定针对性、精细化的营销服务方案奠定了基础,有利于在标准化服务的基础上开展高价值客户群服务,提高客户满意度。同时,本文的客户细分也为各供电企业提供了一定的经验借鉴。
参考文献
[1]汤兵勇.客户关系管理[M].北京:高等教育出版社,2007,36-39.
[2]施健.数据挖掘及其在银行业中的应用[J].金融电子化,2003(06).
[3]王春叶.基于数据挖掘的电力客户细分研究[D].河北:华北电力大学,2009.
论文作者:肖春1,高晋峰2,成瑞芬3
论文发表刊物:《电力设备》2017年第31期
论文发表时间:2018/4/13
标签:客户论文; 风险论文; 数据论文; 业务论文; 群体论文; 敏感论文; 电费论文; 《电力设备》2017年第31期论文;