基于电力调度自动化系统中数据挖掘技术的应用论文_李超,赵栗杰

(国网山西省电力公司吕梁供电公司 山西吕梁 033000)

摘要:电力调度自动化系统主要是被应用在线调度生产运行中,能够对数据信息进行分析、控制、传输。数据挖掘技术作为一种人工智能和数据库技术结合的新型技术形式,将其应用到电力调度自动化系统中能够有效解决电力调动自动化系统数据信息应用不合理的问题。文章在阐述数据挖掘和电力调度自动化系统内涵的基础上,结合蚁群算法改进原有周期性数据挖掘方法,旨在进一步提升电力调度自动化系统运行速度,为相关人员的报表制定、事故预警提供帮助。

关键词:数据挖掘;电力调度自动化系统;应用

引言

数据挖掘技术主要指的是一种数据库技术与人工智能技术结合的技术,利用一定算法,可以从大量的数据信息中搜索到所需信息。在电力调度自动化控制系统中应用数据挖掘技术具有重要意义,对于电力企业的发展和创新具有推动作用,同时可以让电力企业的经济效益得到提升。

1、数据挖掘技术及其原理

数据安全研究中心网站对数据挖掘的定义是:基于现实或虚拟的数据处理中心,围绕一个特定的研究对象或一个特别的研究目的,对数据进行采集、保存、分析等数据收集与管理。目前,国网电力公司正在实施“SGl86”工程,正在建设并完善以数据采集、数据共享、数据分析为主要功能的智能型综合业务系统。数据中心功能架构图如图1所示。服务架构是海量实时数据中心对外提供的各种服务功能的集合,具体而言,包括数据接入服务、数据采访和基础工具服务。利用海量数据,可以访问电力系统各业务流程的历史记录,提供各流程业务的标准、统一访问方法,并为跨专业、跨部门的分析及辅助决策提供必要的支撑。海量实时数据中心提供标准的业务应用数据接入方法,主要包括以下几种。(1)实时/历史数据通用应用程序访问接口(UAPI)。利用应用程序访问接口将数据写入中心服务平台,以实现实时/历史数据接入。业务应用可以直接使用UAPI直接向实时数据中心写入数据,从而完成实时历史数据的接入。该接入方法可以适用于同在管理信息大区的业务应用接入,生产控制大区的应用由于单向隔离网闸而无法应用。(2)E格式语言文件。E格式语言文件是国网公司制定的一种通用的实时数据传输标准,实现文本文件在单向隔离网闸的穿越传输,在调度与信息的数据交换领域得到了广泛的应用。该接入方法能够适用于所有业务应用的接入,由业务应用依据需求持续形成E格式文件并输送至实时数据中心的接入服务器,接入服务器负责解析E格式文件并调用UAPI将数据写入实时数据中心。(3)实时数据接入通用规约。该通用规约基于TC/IP,通过网络通信报文的形式将业务应用的数据传输到实时数据中心的接入服务器,接入服务器负责解析该通用规约并调用UAPI将数据写入实时数据中心。考虑到单向隔离网间的特点,该通用规约在设计时不考虑应答报文,其目的是通过通信规约的形式。(4)其他标准的规约和接口。对于电力行业及相关行业内比较成熟通用的标准规约和接口,实时数据中心都应提供支持。

图1数据中心功能架构图

2、数据挖掘技术的分类及过程

数据挖掘技术可以分为发现驱动的数据挖掘技术和验证驱动的数据挖掘技术这两种类型,前者主要指的是用户利用机器进行学习,可以发现新的假设,在此过程中,需要分析人员进行参与,后者主要指的是用户对之前自身提出的假设,利用一定技术对假设进行验证。数据挖掘的过程可以概括为:逻辑数据库→被选择的数据库→预处理后的数据→被转换的数据→被抽取的数据→被同化的数据。也就是选择、预处理、转换、挖掘、分析与同化,在确定业务对象之后,需要进行数据处理,在数据处理过程中,首先需要搜索和业务对象相关的数据信息,然后选择合适的数据,然后需要对数据做出质量研究,对数据挖掘技术类型进行确认,最后需要对数据予以转化,让其成为一个可以进行算法挖掘的分析模型。

3数据挖掘在电力调度自动化系统中的应用

(1)神经网络。作为应用较为广泛的一种人工智能研究方法,神经网络早已在我国实现了较为广泛的应用,电力调度自动化系统的数据挖掘也是其应用的重要领域,由于数据自行处理、数据分布存储、高度容错性是神经网络的应用优势所在,这就使得神经网络较为适用于模糊、不完整、不准确数据的处理。在电力调度自动化系统的数据挖掘中,神经网络主要通过关联分析的方式实现数据逻辑处理,具体处理可以分为以下几个方面:a.整合统一基础数据。由于电力调度自动化系统包含的数据具备庞大复杂、种类繁多的特点,因此神经网络的应用需要通过整合统一使相关数据形成结构模型,通过神经网络系统实现数据统一管理。b.实现不同环节电力调度的关联。应用数据挖掘神经网络方法整理不同环节的电流状态和参数,并保证相关数据信息的整合性,即可实现不同环节电力调度的关联。c.分析与决策。结合神经网络整理的整合数据,即可开展分析、决策以及数据共享。(2)灰色分析法。灰色分析法能够较好分析电力调度过程出现的不完整数据,但不适用于较为庞大的数据是该数据挖掘方法存在的不足。一般情况下,灰色分析法的应用需要深入了解设备数据参数,如用户用电情况预测、母线负荷数据值、电力销售情况预测等,结合分析确定电力调度边界电量,即可提升数据收集的可靠性,电力调度自动化系统的运行也将由此获得较为有力的支持。(3)关联规则。作为数据挖掘的重要分支,关联规则能够通过发觉大量数据项集之间的有趣关联和相互联系实现信息的高质量分析,刚刚提到的神经网络严格意义上也属于关联规则范畴,不过本文关于关联规则的研究主要围绕周期性关联规则挖掘算法展开。周期性关联规则挖掘算法具备扫描数据库次数较少、避免扫描数据库的时间开销、连接程序中相同项目的比较次数较少、数据项集频度统计速度较高等优势,由此实现的周期性数据集挖掘、关联规则挖掘便能够大大降低电力调度自动化系统的事故发生概率。值得注意的是,本文研究的周期性关联规则挖掘算法结合了蚁群算法,这是由于原算法使用了大量的搜索操作、分类检索和路径检索,蚁群算法下走过的路上会留下信息素,这就使得较短路径上的信息素浓度较高,结合负信息素理论,即可保证有信息素的地方蚂蚁不能走过。如使用表1所示的事务数据库D(部分),即可结合时态事务数据库D分类数据集改进、每一个分类数据集周期性数据集挖掘改进,以数据项A分类为例,即可求得表2所示的时态属性差,由此开展更深入计算则能够更深入了解周期性关联规则 挖掘算法的思想,也能够认识到蚁群算法的重要性。

结束语

综上所述,文章在阐述数据挖掘内涵和电力调度自动化系统内涵的基础上研究了周期性关联规则的数据挖掘算法知识,并将其应用到电力调度自动化系统中,取得了良好的效果。周期性关联规则算法是数据挖掘技术的主流发展方向,在从历史数据中寻找规律的同时能够为电力调度自动化系统运行提供支持,需要引起相关人员的重视。

参考文献:

[1]朱维佳,曹坚.电力调度自动化系统中数据挖掘技术的应用[J].电气时代,2015(07):108-111.

[2]肖福明.浅析数据挖掘在电力调度自动化系统中的应用[J].通讯世界,2014(17):58-59.

[3]郭洋洋,李宇涛.分析电力调度自动化系统实用化应用[J].科技与创新,2017(05):153-154.

[4]李国伟,王新铭.基于数据仓库的一体化电力调度自动化系统的开发与设计[J].自动化与仪器仪表,2016(10):26-29.

论文作者:李超,赵栗杰

论文发表刊物:《电力设备》2018年第10期

论文发表时间:2018/7/26

标签:;  ;  ;  ;  ;  ;  ;  ;  

基于电力调度自动化系统中数据挖掘技术的应用论文_李超,赵栗杰
下载Doc文档

猜你喜欢