摘要:电流互感器、电压互感器是电气回路中不可缺少的部分,对电力系统的稳定运行起着重要作用。二者的作用主要是实现电力系统的一次和二次的电气隔离,把一次测对应的大电流、高电压转换为合适继电保护装置和测量仪表相适应的电流和电压。文章对其检定和校验方法进行了总结。
关键词:互感器;检定环境;接线方式
1 电流互感器和电压互感器的分类
1.1 电流互感器的性能及其分类
1.1.1 光学电流互感器。基于法拉第磁光效应的OTA,主要在不同的电压等级之上成功的挂网试运行。OTA在电站中运行时,环境温度是对其影响最大的一个外界条件。
1.1.2 低功耗电流互感器。主要由一个一次绕组、一个小的铁芯、最小损耗的二次绕组组成。由于微晶合金的线性范围很宽,损耗减少,测量很大的电流时也不在饱和范围内,而且准确度极高,因此测量范围
广泛。
1.1.3 空心电流互感器。空心线圈中,二次绕组在非磁性骨架上。无铁磁材料,故传感器在一定范围内仍有优良的线性特性,因此开始广泛地用于继电保护及其测量装置中。
1.2 电压互感器的分类
1.2.1光学电压互感器。光学电压互感器主要基于电光效应的纯光学式的光学电压互感器的研究。主要分为基于pockels效应和基于逆压电效应。
主要存在的问题:需要较多精度要求高的光学部件,运输困难,现场安装、运行、调试困难;电源供电模块要求较高;温度和光电转换的非线性问题必须更进一步的提高。
1.2.2 电容分压电子式电压互感器。关键在于电容分压器,利用电容的分压原理,实现电压的变换。
主要存在的问题:暂态问题;随着温度的变化问题;电网不平衡导致发生不平衡谐振;一次电压过零短路将产生较大误差。
1.2.3 电阻分压电子式电压互感器。由高电压臂电阻和低电压臂电阻组成电阻分压器,获取电压信号。
主要存在的问题:分压器的稳定性;温度的影响;电晕放电的损害等。
2检定环境的选择
互感器检定的环境条件,必须满足检定规程的要求,即周围气温为+10~+35℃,相对湿度不大于80%。存在于工作场所周围的电磁场所引起的测量误差,不应大于被检互感器允许误差的1/20。用于检定工作的升流器、调压器、大电流电缆线等所引起的测量误差,不应大于被检互感器允许误差的1/10。为此,在实验室内,对有关测量和供电设备进行合理布置,甚至对大电流的载流导线也要合理地布置,否则,它们对互感器的校验将产生不可忽视的测量误差。一般讲,至少应让升流器、大电流导线与互感器校验仪的距离大于3m。为减小大电流电缆所引起的测量误差,应尽可能选择截面积较大的电缆线。
3正确选择接线方式
绝大多数的互感器校验仪都是按差值测量法设计的,因此,在将被检互感器与标准互感器连接到互感器校验仪时,必须保证接线的极性正确。否则,取差电路取的可能是两个电流(电压)的和,而不是两电流(电压)之差。这样,可能将校验仪烧坏。某些互感器校验仪电路元件烧毁,其主要原因是接线方式错误而又误加较大的电流或升较高的电压所致。在接线中还必须考虑到互感器的高低电位端,对电流互感器来说,只有当其初级电路中的L1端与次级电路中的K1端处于接近地电位时,测量从L1端注入的电流与K1端输出的电流,才是该互感器的真实误差。对电压互感器来说,它的X端与x端是处于低电位,而A端和a端处于高电位,检定中将标准互感器的a端与被检互感器的a端短接,在两互感器的x端取次级电压差。如电流端接反,则可能引起泄漏误差。
综上所述,我们在互感器的检定中,应避免电流互感器L1、K1端与L2、K2端对调;电压互感器A端、a端与X端、x端对调。
4 校验时接地问题的处理
采用互感器校验仪进行互感器检定时,必须使互感器校验仪的电路始终处于低电位状态,从而减小其对地的泄流,但对电流互感器而言,在用差值比较法进行检定时,又不允许K1端接地,所以,我们在互感器的检定过程中需要依具体电路的实际情况,合理选择接地点。通常行之有效的接地措施为;将其面板上设置的接地端钮可靠接地。
期刊文章分类查询,尽在期刊图书馆
5 负载匹配
电流互感器与电压互感器的误差特性,对于负载阻抗(或导纳)是十分敏感的。在检定过程中,由于标准互感器的负载选择不匹配,将可能导致误判。故要对标准互感器及被检互感器分别进行负载匹配,使其在检定电路承担的实际负载等于该互感器的额定负载。由于检定线路已形成一部分负载,所以应对检定线路进行内载测试。结合负载箱的参数,选合适的导线,准确匹配后,才可以工作。每次检定前,注意一定要将每个接线端钮旋,以防松动和断线。
6 合理选择校验仪的量程开关
由于互感器校验仪的功能较多,在对互感器进行检定时,一定要正确选择功能开关,正确选择合适的量程,以避免误操作造成人为事故,减小校验仪产生的测量误差。
7 外观检查
外观检查是检定人员对被检互感器进行的表面直观的检查。虽然十分简单,但却是必不可少的重要一环。该环节的主要目的是:发现表面存在的问题并正确处理。即首先检查铭牌标记的完整性,以便提供正确的参数,进行检定。其次检查接线端钮的完好状况,以及极性标记。对多变比互感器,还应检查不同变比的接线方式。
8 绝缘电阻的测定
用兆欧表测量其各绕组之间和绕组对地之间的绝缘电阻值。
9 工频耐压试验
工频耐压试验,包括工频耐压试验和感应电压试验。工频耐压试验时,必须严格遵守有关规程。
10 极性检查
无论是电流互感器还是电压互感器,如将极性接错,很容易烧坏仪器。因此,正式检定误差前,都要先检查其极性的正确性。检查的方法可用比较法或直流法,一般校验仪上都有互感器极性试验及显示功能。当连接方式正确,仍发现极性指示器动作,表明被检互感器的内部极性有问题。这时可反接极性再试。对任何互感器的检定,该步骤都不能省略,否则极易造成人为事故的发生。
11.退磁
电流互感器的铁芯一般有两种材料,即铁镍合金与硅钢片。对不同材料,不同结构型式的电流互感器,其退磁的方法和要求各不相同,对用铁镍合金作铁芯的电流互感器,如采用次级开路退磁,往往会发生激磁电流开不起来的现象,最好采用闭路退磁。以硅钢片作铁芯的电流互感器,采用闭路退磁法、开路退磁法均可。0.2级及以上的电流互感器,用闭路退磁法为宜。
12灵敏度的检查
用互感器校验仪进行检定或测量时,应保证测量线路达到足够的灵敏度。试验过程中,为保护检流计不受过分的冲击,应该逐步提高其灵敏度档进行试验,直到线路灵敏度达到检定所需为止。
上述的灵敏度,与常谈的被检仪器仪表的灵敏度有本质区别。这里所谈,并不是被检互感器的灵敏度,而是指测量线路的灵敏度。
13 误差测定
测量误差时,应按被检互感器的准确度级别及规程要求,选择合适的标准器及调节、测量设备,接线必须正确无误。电流(电压)的上升和下降,均需平稳而缓慢地进行。
14 严禁电流互感器二次开路
对一般电流互感器而言,其二次侧绕组的匝数很多,在带额定电流工作的条件下,一旦发生二次开路,将会在次级绕组中产生很高的开路电压,危及设备与人身的安全,故在作电流互感器的试验时,一定不要发生二次开路。
15周期检定和轮换
运行中的互感器应定期轮换,进行试验室检定,高压互感器可用现场检验作为周期检定。其检定和轮换周期,按《JJG314-2010》互感器校验仪计量检定规程要求,高压互感器至少每10年轮换或现场检验一次;低压电流互感器,至少每20年检定或轮换一次。
参考文献
[1] 时德钢,刘晔,张丽平,胡光辉,张国林.高电压等级电压互感器综述[J].变压器,2003,(6).
[2] 王德忠.高电压互感器技术的发展趋势[J].上海电机学院学报,2012,(1).
[3] 李红斌,张明明,刘延冰,汪本进.几种不同类型电子式电流互感器的研究与比较[J].2004,(6).
论文作者:宋雅楠,王宁宁,杨浩,姚洋,王奎
论文发表刊物:《电力设备》2018年第2期
论文发表时间:2018/5/30
标签:互感器论文; 电压互感器论文; 测量论文; 误差论文; 电流互感器论文; 电流论文; 电压论文; 《电力设备》2018年第2期论文;