电气主设备继电保护技术分析论文_刘超

电气主设备继电保护技术分析论文_刘超

(山西兴能发电有限责任公司 山西省太原市古交市 030200)

摘要:电气设备的继电保护主要是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。本章着重介绍了电力系统中主设备继电保护的现状,阐述了发展趋势。

关键词:电气;主设备;继电保护;现状;发展

随着社会经济的发展,科学技术也得到了长足的进步,例如电气主设备继电保护技术,这对于电力系统的正常运行起到了非常重要的作用。如今电力在国民生产中有着重要的地位,加强对电气主设备继电保护技术的研究,具有一定的现实意义。

1.电气主设备继电保护技术

1.1 变压器保护

1.1.1 变压器差动保护

在变压器需要保护的一侧设置监测装置,对电流以及电压进行监控,但是由于监控范围的限制,往往不能够对临近范围发生的故障进行区分。因此需要考虑邻近保护的状态来设定相应的保护参数。为了增强系统的选择性,往往通过采用较小的保护范围以及较长的动作延时。但是这也在某种程度上导致故障变压器无法及时的被隔离,从而加重危害的程度,因此需要能够在故障发生的瞬间将故障设备进行隔离,从而减少相应的损害。为了能够对保护范围内外的故障同时进行准确的判断,这就需要在被保护的变压器的两端都设置相应监控装置,这也能够对故障元件的电流相位进行掌握,从而很好的起到保护作用[1]。

1.1.2 瓦斯保护

瓦斯继电器在电力系统保护中的使用比较广泛,它是根据监测流经瓦斯继电器的油箱气体进行系统保护。当前旋转挡板式瓦斯继电器已经逐渐的取代了传统的浮筒式瓦斯继电器,极大的改善了由于密封性差漏油而发生了误动作,极大的提高了继电保护的可靠性。

1.1.3 变压器后备保护

过电流对于变压器具有较大的危害,因此过电流保护常常被安装在变压器的电源侧,从而在过流的时候能够及时的断开变压器。在变压器上安装后备过电流保护装置往往会造成接线的复杂程度大大上升,可以适当将相邻的保护范围缩小。为了应对三相短路,应该确保其有足够的灵敏度[2]。

1.2 发电机保护

1.2.1 提高定子接地保护的动作灵敏度

很多因素都有可能导致发电机过电压,这就要求中性点在接地的过程当中应该经过配电变压器。对于大型发电设备来说一般不会发生传递过电压,这是因为主变高低压线圈之间没有存在较大的电容。为了最大限度提高定子接地保护动作的灵敏程度,可以将数值较小的电阻安装在配电变压器上,从而最大限度的提升定子接地的灵敏度,能够有效地防止过电压对发电机造成的损害。

1.2.2 失磁保护

当前应用的发电机失磁保护的精度主要受失磁保护组件结构的影响,其中失磁保护常由阻抗元件、母线低电压元件(机端低电压)和闭锁(启动)元件组成。阻抗元件用于检出失磁故障,阻抗元件可按静稳边界或异步边界整定。母线低电压元件用于监视母线电压保障系统安全。母线低电压元件的动作电压,按由稳定运行条件决定的临界电压整定。应取发电机断路器(或发变组高压侧断路器)连接母线的电压,通常取 0.8~0.85 倍母线额定电压[3]。

期刊文章分类查询,尽在期刊图书馆

2.继电保护的发展趋势

2.1网络化、智能化、自适应化

通过建立继电保护网络系统,使电气设备具备网络通信功能,可实现继电保护网络化管理,如通过网络监控系统的运行及进行故障处理和参数整定等。通过采用神经网络、模糊逻辑、遗传算法等智能技术,可以解决电力系统中许多非线性问题,可及时分析、判断和处理故障。自适应技术可以让继电保护装置适应电力系统发生的各种变化,提高继电保护的性能[4]。

2.2 广域保护和控制

广域保护是基于广域测量信息的继电保护。传统继电保护的信息是基于就地的,广域信息包含了就地和远方更宽广区域的信息。实现广域保护的途径是基于在线自适应整定(OAS)和故障元件判别(FEI)。广域保护的通信基于IEC61850标准。广域保护可以解决传统保护在电网运行方式改变而难以满足各继电保护之间相互配合的难题。

3.主设备保护的发展趋势

3.1保护装置的一体化发展

充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。

3.2新型光电流互感器、光电压互感器的应用

传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。

新型光电流互感器(OTA)、光电压互感器(OTV)相对于电磁式TA具有明显的技术优势:不存在饱和问题,频率响应宽,动态范围大,在很大的电流变化区间内保持线性变换关系;实现了强电和弱电的完全绝缘隔离,具有很强的抗电磁干扰能力;不存在二次开路的问题,二次输出值较小,适合与保护直接接口。因此其将成为主设备微机保护的发展趋势。

3.3信息网络技术

当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。在变电站综合自动化方面,保护的配置比较灵活。如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。

4.总结

随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。为此,必须从电力系统全局出发,进行电气设备继电保护的相关研究。

参考文献:

[1]阎伟.电气主设备继电保护技术分析[J].世界家苑, 2011(05).

[2]于根友,郭志新.浅谈电气主设备继电保护技术分析[J].中小企业管理与科技,2010(10).

[3]黄惠容.电气主设备的继电保护技术发展现状与趋势[J].科技促进发展,2011(02).

[4]汪康辉.电气主设备继电保护技术的应用与发展[J].北京电力高等专科学校学报:自然科学版,2012(02).

论文作者:刘超

论文发表刊物:《电力设备》2018年第20期

论文发表时间:2018/11/13

标签:;  ;  ;  ;  ;  ;  ;  ;  

电气主设备继电保护技术分析论文_刘超
下载Doc文档

猜你喜欢