智能电网背景下继电保护的关键问题及对策分析论文_杨凡

智能电网背景下继电保护的关键问题及对策分析论文_杨凡

(神华国华九江发电有限责任公司 江西省九江市 332504)

摘要:智能变电站继电保护系统的可靠性对整个电网系统的安全稳定运行有重要的意义,而继电保护系统的构成导致其受到很多因素的影响。因此,如何提高智能变电站继电保护系统的可靠性是电力行业的一项重要工作。

关键词:智能电网背景;继电保护;关键问题;对策

1智能电网的内涵

智能电网的特征在我国定义为信息化、自动化、数字化和互动化的技术,集团化、精益化、集约化和标准化的管理。与传统的电网相比,智能电网拥有很多优势:(1)抗干扰能力强。智能电网在遇到外界干扰比如极端天气、自然灾害等时,由于其安装了传感、智能设备,能够持续监控和观察外界,因此能够及时自动预警;(2)更加科学的机构。用于发电的各种清洁能源,比如太阳能、风能、水能等都能在智能电网中使用。同时,智能电网也支持分布式电源,其具有即插即用的功能;(3)相对透明、公平的电价。高度信息化、电价信息收集更加充分的智能电网,在定价时也会相对公平。

2继电保护装置在智能变电站中的应用特点

2.1保护变压器

应用变压器保护法可以提升变电站中变压器的使用安全性,变压器有额定电压,当经过变压器的电流增大时,就会导致变压器中的额定电压显著上升。当变压器中的实际电压值超过变压器中的额定电压值时,就会对变压器造成破坏。由此可见,将变压器的电压值调节到额定电压以内就可以对其进行保护。在利用配电保护装置对变压器进行保护时,需要分析装置的应用特点,将配电线路中的电压调节到额定限度之内,这样就能保证配电电压的稳定性,实现对变压器的保护。在对变压器进行保护时,通常采用分布式的保护方法配置电压,显示电路中的电压异常。在进行配电保护工作时,也可以采用独立安装法建立非电量继电保护途径,使用电缆接通路由器的方式安装继电保护装置,完成对变压器的保护。

2.2提升运维安全性

在智能变电站中应用继电保护装置可以提升用电安全性,保护标准是依IEC61850的体系设计的。也就是说,使用网络信息技术可以对变电站内中的各个电路元件实施监控。相对的是,网络是一把双刃剑,网络的应用会增加计算机系统日常的运维风险,网络病毒的入侵也会造成智能变电站的管理异常,出现数据遗失和数据泄露的情况。对于这种现象,就需要应用过去的经验,优化继电保护系统,提升智能变电站的运维安全性。

2.3提升管理的可靠性

应用继电保护系统,提升了智能变电站中的系统保护性,对变电站进行数字化建设。合理设置继电保护装置,保证系统结构的稳定性,提高了变电运营工作管理的可靠性。智能变电站为社会上的工业生产、人们的生活等提供电量。智能变电站的日常工作容易受到外界因素的影响,所以在运维管理过程中,需要提升电子设备的稳定性和安全性,充分考虑电磁兼容问题,发挥继电保护系统的整体效果,削减不良因素,建立预警机制,及时对智能变电站中的运维异常做出反应。

3智能电网背景下继电保护技术分析

3.1智能传感技术

智能传感技术在继电保护信息方面具有采集方便、信息可靠等优点,为继电保护发挥作用提供支持。例如变压器的保护,它以传感技术为基础,在变压器的本身、一次侧和二次侧都设置了智能传感器,根据其用处不同,设置的传感器也有所不同,一般有振动、温度、液面及流量传感器等等,能够对变压器进行检测和控制。在一次侧和二次侧位置上安装振动传感器,检测位移。在变压器本体上安装振动传感器检测位移、安装温度传感器检测温度、安装液面传感器检测油面位置、安装流量传感器检测气体和液体的流量。一次侧和二次侧的振动传感器会受到冰冻、雨水等外部环境的影响,从而可能导致判断错误。而本体上的传感器也可能会因地震等恶劣环境而造成监测的误差。因此,在智能电网背景下,要全面采集输电线路、发电器及变压器等的信息,有效监控继电保护装置及回路,准确定位故障部位,并有计划地调试和检查继电保护装置,从而降低误动或者是损坏操作。

期刊文章分类查询,尽在期刊图书馆

3.2超高压交直流混输技术

超高压交直流混输技术在“三横三纵”电网结构建设格局形成后,对继电保护技术提出了更高的要求。在应用超高压后,电网的暂态特征在故障期间更加明显,逐渐变慢的电网非周期分量衰减增加了谐波分量,从而提高了对继电保护互感器的性能要求。智能电网下的继电保护互感器能够有效处理超高压交直流混输技术中的滤波和谐波分量。除此之外,更复杂的暂态性质在超高压交直流混输中出现,使以谐波作为依据的难度加大。超高压交直流混输技术的应用还引入了超高压长线路中的串联补偿等新技术难题,为了解决此类问题需要利用在智能电网背景下加强交直流线路保护的方式,比如使用更加合理的非线性原件等。

3.3电力电子元件的应用

功率整流二极管、可管断晶闸管、功率静电感应晶体管等电力电子元件在智能电网的不断发展中也得到广泛应用。在继电保护装置的设计上,为了避免由于电力电子元件开关频率大导致的大量谐波影响电网的运行,需要对其多加考虑,尤其是直流线路中。行波信号的不稳定现象在直流线路中界线方式、柔性交流输电系统元件及波速的影响下十分突出,是必须要解决的问题。而电力电子元件的应用在提高电能质量,改善电网监控系统方面也具有非常重要的作用,其技术也在智能电网背景下得到发展。

3.4新能源并网

智能电网发展的一个主要特征是对可再生清洁能源的接入使用,这些能源包括水能、风能及光伏等。新能源因其丰富的来源、较低的环境污染和可再生的特点而成为缓解能源危机的一个手段。不过因新能源不稳定的来源、不成熟的开发技术等,也影响到智能电网的正常运行和电能的质量。以风能为例,风能接入点的不同、接入类型的不同、工作的状态等都会影响到电流的运行。因此,在接入新能源时,继电保护设备要将任何可能的问题考虑进去,并对问题进行优化。

3.5优化系统的冗余性设计

在继电保护过程中,系统冗余的优化能更大程度地避免系统错动和拒动问题的出现,进而促进系统的可靠性。继电保护系统的冗余性增强可以从以下2个方面着手:(1)利用以太网交换机中的数据链路层技术实现变电站自动化实时监控;(2)根据变电站网络架构的需求的不同,基于总线结构、环形结构和星型结构这3个基础网络结构的特点进行合理选择应用。总线结构可以有效地减少接线,但同时冗余性有待提高,在使用中对时间长度的要求较大;环形结构由于其环路上的任意点都能提供冗余,冗余性较好,但是收敛时间较长,对系统的重构影响较大;而星型结构的特点是等待时间短、没有冗余度,其可靠性比较低。针对3种结构的不同特点结合自身需求进行合理选择,才能提高变电站继电保护系统的可靠性。此外,在优化系统冗余设计时,应合理分析自己的投入率,在提高系统可靠性的同时注意经济效益的实现。

3.6完善继电保护系统

首先,可以将智能传感器应用于继电保护系统中,这样能够发挥传感器的优势,在获取更多的设备运行信息的同时,将设备运行参数转换为继电保护实现的重要依据,通过这样的方式可以保障继电保护系统的动作执行的可靠性。然而在智能电网设备的外部接线的运行过程中,自然环境的影响是不可避免的,如风霜等天气是极易引起接线振动等问题的。因此,在设备是否发生故障的环节中,不能只依靠单一指标,而应该综合分析全部设备的震动特征。为了做到综合的分析,可以将变压器中的震动传感器的非正常振动作为发生错误的信号,从而进行是否发生故障的判断。同时也应大量应用人工智能分析系统,将温度、湿度等参数也列为参考指标。

结论

在智能电网的背景下,继电保护作为智能电网的关键性技术,面临着机遇和挑战。继电保护中的智能传感技术、超高压交织流混合输电、电力电子元件的应用、新能源并网等已经得到快速发展,成为继电保护的突出特征。在科学技术不断进步的未来,继电保护技术将会得到不断的完善和提高,从而保证电网的正常运行。

参考文献:

[1]钱世伟.智能变电站继电保护系统可靠性分析[J].山东工业技术,2016(18):128.

[2]杨雄.智能电网继电保护技术的分析[J].工程技术研究,2017(7):17-18.

论文作者:杨凡

论文发表刊物:《电力设备》2018年第8期

论文发表时间:2018/6/25

标签:;  ;  ;  ;  ;  ;  ;  ;  

智能电网背景下继电保护的关键问题及对策分析论文_杨凡
下载Doc文档

猜你喜欢