天津市防雷技术中心第二分中心30000
摘要:本文主要探讨了当前常见的高压输电线路防雷措施存在的优缺点,并以此为基础,对防雷措施进行优化研究。
关键词:输电;防雷;措施
1、雷电对高压输电线路的影响
高压输电线路暴露在外部环境下,易受恶劣天气条件和自然灾害的影响,降低电网运行的安全稳定性。雷电是常见的自然现象,也是威胁高压输电线路安全的重要外界因素之一。
1.1直击雷危害
直击雷是指雷电直接对高压输电线路产生电击,在没有采取防雷措施的情况下,易造成严重危害。如,雷电直接击中杆塔后,雷电流急剧上升,在瞬间增大杆塔顶部与导线之间的电位差,出现闪络现象,阻碍杆塔顶部与导线的正常连通,严重时造成两者中断,直接危害到高压输电线路运行;直击雷还会对导线产生较大危害,使导线产生过电压,易引起线路故障。
1.2感应雷危害
当雷云经过高压输电线所在区域时,会产生放电现象形成电磁感应,对路线造成危害。感应雷危害是常见的雷电灾害类型,对高压输电线路的危害较小,一般对35kV以下的线路能够产生较大危害。
1.3雷电冲击波危害
相比较直击雷和感应雷危害而言,雷电冲击波具备突发性的特点,在发生雷电冲击波时,高压输电线路无法承受突如其来的高压,对线路带来严重冲击和破坏,引发线路故障,进而威胁到高压输电线路的正常运行。
2、常见高压输电线路防雷措施分析
2.1绝缘子使用分析
在高压输电线路之上安装绝缘子,来实现输电线路防雷的目的,是当今常用的防雷措施之一,就绝缘子而言,其主要是由陶瓷、钢化玻璃等材料制成,在应用方面具有较高的经济性,且应用效果也较好。使用绝缘子来进行防雷,通常是起到支撑导线与防治电流回地等方面的作用,其通常需要确保环境变化及电负荷条件不可对各种机电应力产生影响,若此方面无法达到,则绝缘子会失去作用,进而会影响到高压输电线路的运行及使用寿命。
2.2避雷线防雷分析
应用避雷线进行防雷,其通常是在线路防雷之中应用,也可称之为架空地线,其能够在线路受到雷击之后,将导线有效的遮蔽,最大限度的承担雷电,而后将线路上的大部分电压经杆塔传导而进入大地。
2.3杆塔架设分析
杆塔对于高压输电线路而言,其通常是起到支撑的作用,但因其是经由钢材及混凝土所制成,易出现裂缝问题,进而造成遭受雷击概率的提升,严重者会出现水泥杆爆裂及倒杆的问题,进而造成严重影响。
2.4接地装置使用分析
就接地装置而言,其主要是指将接地电极与在地下埋设的接地网向连接的设备,该设备在应用之中常常会存在两个方面的隐患。第一点,因杆塔地网土壤因素的影响,而出现的地网电化学腐蚀。第二点,因接地线敷设的深度及长度方面的影响,而复接地装置电阻造成的影响。
3、高压输电线路防雷改进措施
3.1降低杆塔的接地电阻
为了有效确保输电线路和固体结缘不会被雷击的高压击穿,可以通过减少杆塔的接地电阻来实现。
期刊文章分类查询,尽在期刊图书馆随着杆塔接地电阻的不断降低,塔头电位下降很快,线路中的空气和绝缘就越不容易被击穿,设备的工作可靠性也就会越高。为了有效降低杆塔的电阻,需要根据杆塔设计的实际情况,掌握地网设计中需要达到的接地参数,并根据实际土壤电阻率来确定合适的接地电阻,并制定相关的施工方案和质量标准。只有杆塔的接地装置满足了设计的要求,才能有效提高设备的耐雷水平。在对旧电网的改造过程中,在完成新接地的改良工作后,应该新地网络和旧地网络有效连接起来,这样可以进一步降低接地电阻。在实际的应用过程中,深孔垂直接地的阻抗效果最好,如果施工条件满足,应该尽量采用这种地网形式,这样才能充分提高接地装置的散流效果,让接地保护装置可以充分发挥自身的作用。
3.2合理运用不平衡的绝缘方式
不平衡的绝缘方式具有很多的优点,首先不平衡的绝缘方式经济性较强,其次,这种不平衡的绝缘方式操作起来简便,可以有效的增强高压输电线路的绝缘水平,进而在一定程度上提高高压输电线路的耐雷水平。在高压输电线路运行时,一般线路出现跳闸的概率要明显低于一些高塔杆的高压输电线路。为了有效的避免雷击事故所造成跳闸现象,操作人员首先可以将高塔杆与避雷线之间的导线距离适当的增强,其次,工作人员可以在现有绝缘子串数量基础上适当的增加,从而在根本上提高高压输电线路的绝缘性能。现阶段我国在高压输电线路的防雷措施上提倡使用不平衡的绝缘方式,将不同回路绝缘效果的差值设置成相应的电压峰值,在遇到雷击事故时,绝缘子串数量较少的回路中就会事先发生闪络现象,这样地线就成为了雷击事故发生时闪络后的导线,从而有效的提高高压输电线路的耐雷水平,保障供电系统的正常运行。
3.3半导体消雷技术
半导体消雷技术可在高压输电线路保护工作中发挥出必要的作用,该种消雷技术可以增强消雷效果,消除防雷工作的漏洞,同时还能减弱与中和电流,相比其他防雷技术方法,该消雷手段较为简单,因此在未来的线路保护环节中可被有效推广。消雷器这是一种防雷装置。由设置在被保护物上方、带有很多尖端电极的电离装置,设置在地表层内的地电流收集装置和接通这两种装置的连接线构成。电离装置在雷云强电场中大致保持着大地电位,它和附近空气的电位差会随雷云电场强度激增而促使场强区内针尖附近的空气电离,形成大量空间电荷。一般雷云下层为负电荷,地面感应产生正电荷。电离的负电荷为地电流收集装置所吸收,电离的正电荷为雷云负电荷所吸引和中和,从而发生消雷作用。
3.4强化避雷线的架设,减小保护角
就高压输电线路防雷措施之中,避雷线架设早已成为最基本的防雷措施,且在电压较高的线路防雷之中应用效果较好,在经济方面也具有较高的优势。在此方面的改进主要是,确保在高压输电线路的架设之中,都能良好的应用避雷线,且在架设方式的选择方面,应以双避雷线架设为主。此外,经大量输电线路雷击实验证明,当雷击事故发生时,雷电经由避雷线对导线形成冲击现象的发生,通常与输电线路所处环境之中的杆塔高度、防护角度、地质情况等方面的因素关系密切。从此方面分析来看,区域的地质情况无法改变,而在高压输电线路的杆塔架设完成之后,其高度通常不宜变动,此时最佳的防雷方法,便是对保护角度进行合理的调整,以此来达到最佳的防雷效果。对于上百千伏的高压输电线路而言,其在保护角设计时,通常表现在以下几方面:第一点,若线路架设的区域为山区,则考虑到边坡因素的影响,在保护角方面设计时,应使之小于5°。第二点,若线路交涉的区域为平原区域,则在保护角设计时,应使之小于0°。就总体而言,在开展保护角的设计工作时,若想达到良好的防雷击效果,则其角度应不大于0°。
4、结论
综上所述,高压输电线路是电力系统的 重要组成部分之一,其运行稳定与否直接关系 到电网的运行可靠性。为保证高压输电线路的安全、稳定、可靠运行,应当对各种防雷技术 措施进行综合运用,以此来增强线路的防雷水平。在未来一段时期,应当加大对防雷技术的研究力度,除对现有的技术措施进行优化改进 和完善之外,还应开发一些新的防雷技术,从 而为高压输电线路防雷提供技术支撑。
参考文献
[1]荣晨.高压输电线路综合防雷措施的分析与探讨[J].科学技术创新,2018(12):5152.
[2]黄林.高压输电线路综合防雷对策分析[J].通信电源技术,2018,35 (03):231-232.
论文作者:吴伟
论文发表刊物:《中国电业》2019年第06期
论文发表时间:2019/7/15
标签:线路论文; 防雷论文; 高压论文; 杆塔论文; 避雷线论文; 雷电论文; 导线论文; 《中国电业》2019年第06期论文;