摘要:城市综合地下管线是城市基础设施的重要组成部分,是城市的“生命线”和“血脉”。各种原因,目前我国很多城市存在地下管线分布情况管理不明,管线档案资料不全不准等情况,导致城市建设时,常有地下管线被破坏的事故发生。因此,摸清城市地下管线现状,通过信息系统管理管线数据是城市规划、建设、管理的需要,是保证城市人民正常生产生活以及城市发展的必要措施。
关键词:城市地下管线;探测难点;对策
1、城市管线简介
地下管线是指埋设于地下(水下)的各种管(沟、巷)道和电缆的总称。地下管线的种类较多,埋设方法与工艺方法不尽相同。根据地下管线的用途或性质不同,可以分为以下几种:给水、排水、燃气、电力、电信电(光)缆、供热、人防通道、工业管道。按照材质的不同,又可分为由铸铁、钢材等金属材料构成的金属管道;由铜、铝等金属材料构成的金属电缆;由光纤材料构成的非金属线缆;由陶瓷、水泥、塑料非金属材料组成的非金属管道;由钢筋作为骨料构成的水泥管、墙体。
根据埋设方式不同,可分为以下几种:架空敷设、直埋敷设、地下管沟敷设、共同沟敷设、非开挖敷设。非开挖技术又称水平定向钻探技术(horizontaldirectionaldrilling),即非开挖敷设地下管线施工技术。它是传统管线施工技术的一次革命,经济、环保、安全,它不破坏环境、不阻断交通、不扰民,不破坏已有建筑物或构筑物,具有较高的文明程度。地下管线非开挖方式敷设一般分顶管施工和定向钻穿越两种,埋深一般在几米至十几米之间,有的甚至达几十米。
2、地下管线探测难点解决方案
2.1平行管线探查方法
平行管线的探查,优先采用直接法或夹钳法,从而减弱相邻管线的干扰。然而,实际工作中,因缺少明显点,没有良好的接地条件等,无法采用直接法和夹钳法,只能采用感应法。为此,管线探查时可采用下述方法:
(1)水平压线法:根据垂直偶极子施加信号时不激发其正下方管线,而激发邻近管线的特性,将发射机平卧,放在邻近干扰管线正上方,从而压制地下干扰管线,突出邻近目标管线信号。这是探查平行管线的有效手段。(2)垂直压线法:利用水平偶极子施加信号,线圈正下方管线耦合最强的特性,将发射机直立,放在目标管线正上方,从而压制邻近干扰管线,突出目标管线信号,从而区分平行管线。该方法适用于埋深浅、间距大的平行管线。(3)倾斜压线法:平行管线间距较小时,上述方法探查效果均不好,可采用倾斜压线法。该法是根据目标管线与干扰管线的空间分布位置,选择合适的发射机位置和倾斜角度,在保持发射线圈轴向对准干扰管线的前提下,尽量将发射机置于目标管线上方附近,从而确保有效激发目标管线,压制干扰管线。
2.2非金属管道探查技术
(1)非金属管线探查。探查非金属管线时,根据现场条件、管径的大小及目标管线与周围介质的差异等特性,可采用示踪电磁法、探地雷达断面扫描探查及钎探、开挖验证等方法。具体做法为:先将管线上的明显点(阀门井、排气阀井、测压井等)定位,再利用金属分支管线采用电磁感应法确定其与非金属管道的连接点。同样,对过桥、穿路、拐弯等特殊地带的局部金属管线也可用探测仪探查定位。利用上述方法确定的管线点可大致将管线走向及所在范围圈定,根据已探明管线的情况,在需要确定管线点的地段,用探地雷达进行断面扫描探查。在具备钎探或开挖条件的地带,进行了钎探或开挖验证。采用探地雷达对非金属管道(如砼管、PE管、UPVC管等)探查时,应选用与探查对象的埋深和管径相匹配的发射频率和合适的接收天线;在一个探测点应作两次以上的往返测量,以确认异常的可靠性;如探查对象无明显异常,应在该探查剖面前后作反复多次测量,以利于发现异常;对不规整的管线异常要进行开挖验证;要在探测点附近的已知管线上作雷达剖面用以确定介电常数和波速。
(2)预埋非金属空管探查。此类管线可采用示踪法或探地雷达进行探测。用空管内预埋的铁丝或人工穿设的示踪线,然后采用直接法或双端连接的方法施加信号,利用管线探测仪定位测深。
期刊文章分类查询,尽在期刊图书馆采用探地雷达探测时,具体方法参照非金属管线探查。
(3)小规格非金属管线探测。对埋深大、规格小的金属管线,由于目标规模小,且上覆土层多为杂填土,探地雷达很难取得良好的管顶反射异常,为此,对此类管线应尽可能收集竣工资料,在此基础上通过管线埋设时的土层扰动破坏产生的异常来确定。
2.3大埋深管线探测
管线探测仪探测深度通常为3.0~4.0m,对深埋管线,在无出露点的情况下,采用常规感应法探测很难满足要求。为此,可通过以下方式提高探测准确率:
(1)扩大探测范围,找到管线出露点,采用直接法施加信号,并加大发射机输出功率,提高信噪比。(2)在没有出露点的情况下,尽可能在埋深浅处施加感应信号,以增大管线感应电流,提高接收信号强度,提高信噪比。(3)利用长金属导线采用双端连接的方法施加信号,使发射机、长导线与管道自成一电流回路,提高管线的电流强度,达到探测深埋管线的目的。
2.4非开挖技术敷设管线
随着水平定向钻进、顶管等非开挖技术的广泛使用,非开挖敷设的管线探测成为地下管线探测的难点之一。水平定向钻进技术铺设的管线其深度多渐变,探测时易受浅埋管线的干扰影响,探测难度相对较大。为提高此类管线的探查精度,可采取以下方法:
(1)全面收集测区范围内非开挖敷设管线的设计、竣工资料,并进行实地核实。(2)对已敷设电缆的管线,采用夹钳法施加信号,以减弱浅部及旁侧管线的干扰。在连续追踪探测时,考虑到其渐变特征,将加密管线点,以便准确描述其变化特征。(3)对预埋的电缆类空管,采用示踪法或探地雷达进行探测。(4)非开挖敷设管线穿越道路、河流、建筑物时,管线埋深较大且穿越距离长,信号随探测距离的增加而迅速衰减,导致探测误差增大或无法追踪探测。为此,探测时尽可能增大发射机的发射功率,提高信噪比,同时在穿越道路、河流及建筑物等前设置管线点,如道路、河流两侧、建筑物前后,以控制其走向。
2.5地质雷达法
(1)工作原理:探地雷达(groundpentrating/probingradar,GPR),是通过对电磁波在地下介质中传播规律的研究与波场特点的分析,查明介质、结构、属性、几何形态及空间分布特征。它由地面上的发射天线T将高频电磁波(主频为106~109Hz)以宽频脉冲形式送入地下,经地下目标体或不同电磁性质的介质分界面反射后返回地面,被另一接收天线R所接收,而其余电磁能量则穿过界面继续向下传播,在更深的界面上继续反射和透射,直至电磁能量被地下介质全部吸收,电磁波在地下介质传播过程中遇到与周围介质电性不同的管线界面时产生反射并被接收天线记录下来,显示在屏幕上形成一道雷达记录。当天线沿测线方向逐点移动探查时,各道记录按测点顺序排列在一起,形成一张探查雷达图像,通过分析雷达剖面图像中各反射波强度、波形特征及到达时间,可推断地下管线的分布状况。
(2)可解决的管线定位问题:可解决深埋深度大的金属管线或含钢筋的砼管线及大管径非金属管线的空间定位问题。
(3)探测条件:为更好地实施探地雷达探测工作,在布置探地雷达测线前,应通过收集资料和现场踏勘尽可能详细了解探测目标管线的管径、材质及埋设情况;通过已探查的明显管线点、分支管线了解目标管线的大致走向、位置和埋深。
3、结语
虽然地下管线分布复杂,探明其走向、埋深、管材等属性可以借助先进的探测仪器,但是,实际作业中还需要作业员针对不同现场,认真分析查阅相关资料,不断总结分析,采用多台仪器、多种方式方法交叉探测,更好的提高探测效率和数据精度。
参考文献:
[1]陈穗生.管线探测四大难题的探测要点[J].工程勘察,2007(07):62-67.
[2]张红彦.地下管线探测重点与难点分析[J].地球,2016(03):157.
论文作者:张胜
论文发表刊物:《基层建设》2017年第20期
论文发表时间:2017/10/31
标签:管线论文; 地下论文; 非金属论文; 发射机论文; 方法论文; 信号论文; 目标论文; 《基层建设》2017年第20期论文;