浅谈电气运行中的高压线路保护问题论文_李瑞华

浅谈电气运行中的高压线路保护问题论文_李瑞华

深圳市金安宏安全技术咨询有限公司 广东深圳 518116

摘要:随着我国社会经济的不断增长,人口数量的急剧增加,电力供应需求也与日俱增,超高压输电线路已经难以满足当下的社会电力供应需求。在这种情况下,特高压输电技术得到快速发展,特高压输电线路的应用将使现有的电网技术得到质的提升。本文将对特高压输电线路进行简单介绍,在此基础上,对其继电保护原理和技术进行分析。

关键词:电气运行;高压线路;保护问题

1高压线路保护分析

对高压线路进行保护,需要建立在提升电网环网的稳定性和安全性的基础之上,在我们的高压电线路保护的过程中,更多地是应用双重保护的方式,其中包括主保护和后背保护两种不同的形式。可见,在实际的工作中,对于线路保护工作来说,工作所涉及到的环节比较多,复杂性也相对较强。因此,保护线路的安全性和稳定性就显现出其重要性。但是,电力系统在运行中,涉及到的线路所承受的最大功率之间存在着明显的差别,其中比较常见的就是220kV的电力线路,这种线路类型主要选择的是合环运行的模式,在进行输电和配电的过程中都能够达到一定的要求。当然,不可避免的也会出现这样或者是那样的问题。比如,如果线路运行的方式不科学,就很容易出现系统热稳定问题比较突出或者是破坏性比较大。因此,对线路进行保护就存在着一定的困难。由于这些问题的一直存在,需要工作人员加强对高压线路的保护力度。在做好电力线路配置科学性的基础上,以主保护为基础,不断提升后背保护的力度。

2高压线路常见故障类型

2.1雷电故障

在自然灾害造成的输电线路故障中,雷击最为普遍且不可抗力。其具有不可抗力、不可预测和复杂性的特点,因雷击带来的跳闸事故不仅对电力设备的运行造成影响,也会缩减电网设备的使用寿命。比如:一些山区的高压线路延伸距离长,加上偏低云层,客观上更加难以避免遭受雷击。我国一半以上的山区高压线路故障问题源自于雷击,雷击也成为致使高压输电线路故障发生、影响输电线路稳定安全运行的首因。

2.2覆冰故障

高压输电线路的覆冰故障常由于受到冬季温度、湿度等自然气候的作用,处于0℃以下的水蒸气与架空的高压线路发生碰撞而结冰,形成覆冰现象。一旦高压线或杆塔上覆冰超出其荷载力,断线、倒塔等故障会在所难免的发生。这对于雨雪天气环境下的高寒地区尤为常见,具有危害范围大、抢修难度高的特点。

2.3架空线的断裂故障

高压线路因大风、微风振动、老化等自然因素导致的断裂,是北方地区的常见故障种类。其中,风速较小的微风振动引起的线路断裂是主要原因。微风震动使得架空的高压线被反复扭折,长时间暴露空气中再加上日晒雨淋等作用,加速线路老化,从而形成线路断裂。而对于南方地区,往往因大风导致架空线路断线或杆塔倒塌,导致线路跳闸等故障。

2.4其他外力因素引起的故障

造成高压输电线路故障的因素还有不确定且分散性发生的山火、鸟害等大自然生物带来的运维故障。以南方地区为例,鸟害是其中一个最主要的危害。南方的自然环境中有许多珍稀鸟类,鸟类喜欢在杆塔上筑巢,致使线路出现短路故障,造成高压输电线路的瘫痪。此外,鸟巢的树枝、杂物和鸟粪等也为高压输电线路跳闸等故障的发生,带来诸多不确定性因素。

3继电保护原理与技术

3.1纵联保护技术

纵联保护的原理是发生线路故障时,使线路两侧发生纵向联系,进行信息交换,作为故障排查的判断依据,并有选择的快速切出全线故障的继电保护技术。其中,判断依据是线路两侧判别量的特定关系,通过判别量的交换和与本侧判别量的对照分析,对故障发生位置进行判断,区分区内故障和区外故障。

期刊文章分类查询,尽在期刊图书馆纵联保护的主要方式包括锁闭式、允许式纵联距离保护和纵联电流差动保护等。

3.2纵联距离保护技术

纵联距离保护根据方向判别元件动作情况对线路两侧的故障方向进行比较,判断线路故障的发生位置。如果是内部故障,则线路两侧的故障方向都是正方向。如果是外部故障,则必定有一侧的故障方向是反方向。纵联距离保护发挥作用的基本条件是具有明确的方向性,能够对各种对称和不对称故障作出快速反应,能够对本线路全长进行可靠保护,并且能够对系统振动或二次回路断线采取闭锁措施。这种保护方式不受系统运行方式的变化所影响,并且能够根据不同的线路情况采用相应的动作特性。

3.3纵联电流差动保护技术

纵联差动保护技术通过对线路两侧电流相位进行比较,选择保护行为。若故障线路两侧电流的相位相同,则保护被闭锁,若相反,则保护动作跳闸。纵联差动保护技术的优势特点是装置简单,对全相状态中的对称故障和不对称故障都能作出反应,而且不受系统振荡、回路断线影响,能够在非全相状态和单相重合闸过程中继续提供继电保护。但是该保护技术对信道有较高要求,需要实现两侧保护的联跳。若信道停止使用,该保护会退出运行,所以需要采取后备保护措施。

3.4分相电流差动纵联保护技术

分相差动纵联保护技术的优势在于该保护技术拥有绝对选择性,在一般输电线路中,是一种较为理想的保护方式。其保护原理以基尔霍夫电流定律为基础,不受系统振荡、运行方式影响,过渡电阻对其影响也较小,且本身具备选相功能。但是在特高压输电线路中,发生区外故障时,两端电流受分布电容电流的影响较大,会影响其正常工作,所以需要采取补偿措施,尤其是补偿暂态电容电流算法。如果没有补偿措施,该保护技术不适合在特高压输电线路中使用。

3.5负序方向纵联保护技术

由于负序分量存在于故障的全过程中,可以对不对称故障发生的全过程进行可靠反应,不受系统振荡的影响。但该继电保护技术的灵敏度受系统运行方式和线路换位情况影响,不能对三相短路故障进行可靠反应。可以为负序功率方向元件加配正序故障分量方向元件,或相电流电压突变量方向元件,对三相短路进行专门反应。如此一来就是一种较为完善的纵联保护,这种继电保护技术的理论和实践较为成熟,但是不能作为特高压输电线路的主保护。

3.6工频变化量纵联保护技术

工频变化量纵联保护能够对全相和非全相状态的各种线路故障作出反应,而且动作速度快,不受系统振荡、负荷电流的影响。该继电保护技术在220kV和500kV的输电线路中的应用取得了较好效果。但是只能在故障发生的初瞬间做出反应,不能在故障全过程中进行反应。而且其灵敏度受系统运行方式影响,具有不确定性。

3.7工频故障分量距离保护技术

工频故障分量距离保护技术的测量信号是电力故障引起的分量电流和电压信号,动作性能不受非故障状态影响,无需加振荡闭锁。工频故障分量距离保护不能反映系统振荡和故障前负荷量。其阻抗继电器只反映故障分量的工频稳态量,不反映暂态分量,性能较稳定。该继电保护技术具有较快的反应速度,阻抗继电器本身具备选相能力。

结语:当前我国仍然以火力发电作为主要电能来源。火电发电厂电气系统较为复杂,而且各电厂安装环境也存在较大的差异,这就导致各电厂电气设备故障发生因素也各不相同。电气设备作为火力发电厂的重要设备,一旦电气设备运行过程中故障频发,则会对电厂安全生产带来较大的影响,而且会对整体地区供电的稳定性和持续性带来不利影响。因此火力发电厂需要做好电气运行安全管理工作,针对一些常见故障采取有效的措施保证电气设备运行的稳定性,为电厂安全、可靠的运行奠定良好的基础。

参考文献:

[1]申志成.特高压输电线路继电保护问题的研究[J].华北电力大学(北京),2016.

[2]秦强,项志平.浅谈电气运行中的高压线路保护问题[J].山东工业技术,2015(04)

论文作者:李瑞华

论文发表刊物:《基层建设》2017年第31期

论文发表时间:2018/1/24

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈电气运行中的高压线路保护问题论文_李瑞华
下载Doc文档

猜你喜欢